System Sustainment: Acquisition And Engineering Processes For The Sustainment Of Critical And Legacy Systems


Book Description

'Sustainment' (as commonly defined by industry and government), is comprised of maintenance, support, and upgrade practices that sustain or improve the performance of a system and maximize the availability of goods and services while minimizing their cost and footprint or, more simply, the capacity of a system to endure. Sustainment is a multi-trillion-dollar enterprise for critical systems, in both government (infrastructure and defense) and industry (transportation, industrial controls, data centers, and energy generation).This book is a mix of engineering, operations research, and policy sciences intended to provide students with a thorough understanding of the concept of sustainability and sustainable product life-cycles, and an appreciation of the importance of sustaining critical systems. It starts from the key attributes for system sustainment that includes data analytics, engineering analysis and the public policy needed to support the development of technologies, processes, and frameworks required for the management of sustainable processes and practices. The specific topics covered include: acquisition of critical systems, reliability, maintenance, availability, readiness, inventory management, supply-chain management and risks, contracting for sustainment, and various analysis methodologies (discounted cash flow analysis, discrete-event simulation and Monte Carlo methods). Practice problems are included at the end of each chapter.




System Sustainment


Book Description

"Sustainment" (as commonly defined by industry and government), is comprised of maintenance, support, and upgrade practices that sustain or improve the performance of a system and maximize the availability of goods and services while minimizing their cost and footprint or, more simply, the capacity of a system to endure. Sustainment is a multi-trillion-dollar enterprise for critical systems, in both government (infrastructure and defense) and industry (transportation, industrial controls, data centers, and energy generation). This book is a mix of engineering, operations research, and policy sciences intended to provide students with a thorough understanding of the concept of sustainability and sustainable product life-cycles, and an appreciation of the importance of sustaining critical systems. It starts from the key attributes for system sustainment that includes data analytics, engineering analysis and the public policy needed to support the development of technologies, processes, and frameworks required for the management of sustainable processes and practices. The specific topics covered include: acquisition of critical systems, reliability, maintenance, availability, readiness, inventory management, supply-chain management and risks, contracting for sustainment, and various analysis methodologies (discounted cash flow analysis, discrete-event simulation and Monte Carlo methods). Practice problems are included at the end of each chapter"--




Power Beaming: History, Theory, And Practice


Book Description

Power beaming is the ability to move energy without moving or employing mass between an energy input and energy output. It is an emerging technology that could reshape how we generate and distribute energy and how our devices and autonomous systems are powered.This comprehensive compendium provides the foundation needed for researchers, technology developers, and end users to understand the promise and challenges for power beaming. By establishing a common nomenclature and conceptual approach to the analysis and assessment of power beaming systems, this unique reference text provides a true status of advancements in the field, and lays the groundwork for fruitful future research and applications.




Air Force Software Sustainment and Maintenance of Weapons Systems


Book Description

Modern software engineering practices, pioneered by the commercial software community, have begun transforming Department of Defense (DoD) software development, integration processes, and deployment cycles. DoD must further adopt and adapt these practices across the full defense software life cycle - and this adoption has implications for software maintenance and software sustainment across the U.S. defense community. Air Force Software Sustainment and Maintenance of Weapons Systems evaluates the current state of software sustainment within the U.S. Air Force and recommends changes to the software sustainment enterprise. This report assesses how software that is embedded within weapon platforms is currently sustained within the U.S. Air Force; identifies the unique requirements of software sustainment; develops and recommends a software sustainment work breakdown structure; and identifies the necessary personnel skill sets and core competencies for software sustainment.




Army Sustainment


Book Description

The Department of the Army's official professional bulletin on sustainment, publishing timely, authoritative information on Army and Defense sustainment plans, programs, policies, operations, procedures, and doctrine for the benefit of all sustainment personnel.




Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs


Book Description

The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.




Weapons System Sustainment Planning Early in the Development Life Cycle


Book Description

According to the Government Accountability Office, sustainment of weapon systems accounts for approximately 70 percent of the total life-cycle costs. When sustainment is not considered early in the development process or as an integral part of the systems engineering design, it can negatively affect the ability of the Air Force to maintain and improve the weapon system once it enters service. At the request of the Assistant Secretary of the Air Force for Acquisition, Technology, and Logistics, Weapons Systems Sustainment Planning Early in the Development Life Cycle identifies at what point or phase of the development of a weapons system sustainment planning should be integrated into the program; examines and provides recommendations regarding how sustainment planning should be evaluated throughout the development process; investigates and describes the current challenges with sustainment planning and determines what changes have occurred throughout the acquisition process that may have eroded sustainment planning; and identifies opportunities for acquisitions offices to gain greater access to sustainment expertise.




Evaluation of U.S. Air Force Preacquisition Technology Development


Book Description

From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.




Army Logistician


Book Description

The official magazine of United States Army logistics.




The Growing Threat to Air Force Mission-Critical Electronics


Book Description

High-performance electronics are key to the U.S. Air Force's (USAF's) ability to deliver lethal effects at the time and location of their choosing. Additionally, these electronic systems must be able to withstand not only the rigors of the battlefield but be able to perform the needed mission while under cyber and electronic warfare (EW) attack. This requires a high degree of assurance that they are both physically reliable and resistant to adversary actions throughout their life cycle from design to sustainment. In 2016, the National Academies of Sciences, Engineering, and Medicine convened a workshop titled Optimizing the Air Force Acquisition Strategy of Secure and Reliable Electronic Components, and released a summary of the workshop. This publication serves as a follow-on to provide recommendations to the USAF acquisition community.