Systems Biology of Transcription Regulation


Book Description

Transcription regulation is a complex process that can be considered and investigated from different perspectives. Traditionally and due to technical reasons (including the evolution of our understanding of the underlying processes) the main focus of the research was made on the regulation of expression through transcription factors (TFs), the proteins directly binding to DNA. On the other hand, intensive research is going on in the field of chromatin structure, remodeling and its involvement in the regulation. Whatever direction we select, we can speak about several levels of regulation. For instance, concentrating on TFs, we should consider multiple regulatory layers, starting with signaling pathways and ending up with the TF binding sites in the promoters and other regulatory regions. However, it is obvious that the TF regulation, also including the upstream processes, represents a modest portion of all processes leading to gene expression. For more comprehensive description of the gene regulation, we need a systematic and holistic view, which brings us to the importance of systems biology approaches. Advances in methodology, especially in high-throughput methods, result in an ever-growing mass of data, which in many cases is still waiting for appropriate consideration. Moreover, the accumulation of data is going faster than the development of algorithms for their systematic evaluation. Data and methods integration is indispensable for the acquiring a systematic as well as a systemic view. In addition to the huge amount of molecular or genetic components of a biological system, the even larger number of their interactions constitutes the enormous complexity of processes occurring in a living cell (organ, organism). In systems biology, these interactions are represented by networks. Transcriptional or, more generally, gene regulatory networks are being generated from experimental ChIPseq data, by reverse engineering from transcriptomics data, or from computational predictions of transcription factor (TF) – target gene relations. While transcriptional networks are now available for many biological systems, mathematical models to simulate their dynamic behavior have been successfully developed for metabolic and, to some extent, for signaling networks, but relatively rarely for gene regulatory networks. Systems biology approaches provide new perspectives that raise new questions. Some of them address methodological problems, others arise from the newly obtained understanding of the data. These open questions and problems are also a subject of this Research Topic.




Evolutionary Genomics and Systems Biology


Book Description

A comprehensive, authoritative look at an emergent area in post-genomic science, Evolutionary genomics is an up-and-coming, complex field that attempts to explain the biocomplexity of the living world. Evolutionary Genomics and Systems Biology is the first full-length book to blend established and emerging concepts in bioinformatics, evolution, genomics, and structural biology, with the integrative views of network and systems biology. Three key aspects of evolutionary genomics and systems biology are covered in clear detail: the study of genomic history, i.e., understanding organismal evolution at the genomic level; the study of macromolecular complements, which encompasses the evolution of the protein and RNA machinery that propels life; and the evolutionary and dynamic study of wiring diagrams—macromolecular components in interaction—in the context of genomic complements. The book also features: A solid, comprehensive treatment of phylogenomics, the evolution of genomes, and the evolution of biological networks, within the framework of systems biology A special section on RNA biology—translation, evolution of structure, and micro RNA and regulation of gene expression Chapters on the mapping of genotypes to phenotypes, the role of information in biology, protein architecture and biological function, chromosomal rearrangements, and biological networks and disease Contributions by leading authorities on each topic Evolutionary Genomics and Systems Biology is an ideal book for students and professionals in genomics, bioinformatics, evolution, structural biology, complexity, origins of life, systematic biology, and organismal diversity, as well as those individuals interested in aspects of biological sciences as they interface with chemistry, physics, and computer science and engineering.




Gene Regulation and Metabolism


Book Description

An overview of current computational approaches to metabolism and gene regulation.




Genomic Regulatory Systems


Book Description

The interaction between biology and evolution has been the subject of great interest in recent years. Because evolution is such a highly debated topic, a biologically oriented discussion will appeal not only to scientists and biologists but also to the interested lay person. This topic will always be a subject of controversy and therefore any breaking information regarding it is of great interest.The author is a recognized expert in the field of developmental biology and has been instrumental in elucidating the relationship between biology and evolution. The study of evolution is of interest to many different kinds of people and Genomic Regulatory Systems: In Development and Evolution is written at a level that is very easy to read and understand even for the nonscientist.* Contents Include* Regulatory Hardwiring: A Brief Overview of the Genomic Control Apparatus and Its Causal Role in Development and Evolution * Inside the Cis-Regulatory Module: Control Logic and How the Regulatory Environment Is Transduced into Spatial Patterns of Gene Expression* Regulation of Direct Cell-Type Specification in Early Development* The Secret of the Bilaterians: Abstract Regulatory Design in Building Adult Body Parts* Changes That Make New Forms: Gene Regulatory Systems and the Evolution of Body Plans




Weighted Network Analysis


Book Description

High-throughput measurements of gene expression and genetic marker data facilitate systems biologic and systems genetic data analysis strategies. Gene co-expression networks have been used to study a variety of biological systems, bridging the gap from individual genes to biologically or clinically important emergent phenotypes.




Systems Genetics


Book Description

Whereas genetic studies have traditionally focused on explaining heritance of single traits and their phenotypes, recent technological advances have made it possible to comprehensively dissect the genetic architecture of complex traits and quantify how genes interact to shape phenotypes. This exciting new area has been termed systems genetics and is born out of a synthesis of multiple fields, integrating a range of approaches and exploiting our increased ability to obtain quantitative and detailed measurements on a broad spectrum of phenotypes. Gathering the contributions of leading scientists, both computational and experimental, this book shows how experimental perturbations can help us to understand the link between genotype and phenotype. A snapshot of current research activity and state-of-the-art approaches to systems genetics are provided, including work from model organisms such as Saccharomyces cerevisiae and Drosophila melanogaster, as well as from human studies.




Genomic Control Process


Book Description

Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome




Computational Biology and Bioinformatics


Book Description

The advances in biotechnology such as the next generation sequencing technologies are occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to those who are prepared. However, the driving force behind the positive competition is not only limited to the technological advancement, but also to the companion data analy




Systems Biology and Regulatory Genomics


Book Description

This book constitutes the thoroughly refereed post-proceedings of two joint RECOMB 2005 satellite events: the First Annual Workshop on Systems Biology, RSB 2005 and the Second Annual Workshop on Regulatory Genomics, RRG 2005, held in San Diego, CA, USA in December 2005. It contains 21 revised full papers that address a broad variety of topics in systems biology and regulatory genomics.




The Regulatory Genome


Book Description

Gene regulatory networks are the most complex, extensive control systems found in nature. The interaction between biology and evolution has been the subject of great interest in recent years. The author, Eric Davidson, has been instrumental in elucidating this relationship. He is a world renowned scientist and a major contributor to the field of developmental biology. The Regulatory Genome beautifully explains the control of animal development in terms of structure/function relations of inherited regulatory DNA sequence, and the emergent properties of the gene regulatory networks composed of these sequences. New insights into the mechanisms of body plan evolution are derived from considerations of the consequences of change in developmental gene regulatory networks. Examples of crucial evidence underscore each major concept. The clear writing style explains regulatory causality without requiring a sophisticated background in descriptive developmental biology. This unique text supersedes anything currently available in the market. - The only book in the market that is solely devoted to the genomic regulatory code for animal development - Written at a conceptual level, including many novel synthetic concepts that ultimately simplify understanding - Presents a comprehensive treatment of molecular control elements that determine the function of genes - Provides a comparative treatment of development, based on principles rather than description of developmental processes - Considers the evolutionary processes in terms of the structural properties of gene regulatory networks - Includes 42 full-color descriptive figures and diagrams