Systems of Commercial Turbofan Engines


Book Description

To understand the operation of aircraft gas turbine engines, it is not enough to know the basic operation of a gas turbine. It is also necessary to understand the operation and the design of its auxiliary systems. This book fills that need by providing an introduction to the operating principles underlying systems of modern commercial turbofan engines and bringing readers up to date with the latest technology. It also offers a basic overview of the tubes, lines, and system components installed on a complex turbofan engine. Readers can follow detailed examples that describe engines from different manufacturers. The text is recommended for aircraft engineers and mechanics, aeronautical engineering students, and pilots.




Advanced Control of Turbofan Engines


Book Description

Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial) engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. Advanced Control of Turbofan Engines is ideal for graduate students doing research in aircraft engine control and non-aerospace oriented control engineers who need an introduction to the field.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Aircraft Instrumentation and Systems


Book Description

Aircraft Instrumentation and Systems has the adequate coverage to deal generally the topics for undergraduate course on Aircraft Instrumentation. It covers: An introduction to aircraft instruments and systems, Air data systems and air data computers, Navigation systems, Gyroscopic flight instruments, Engine instruments, Electronics flight instrument systems, Safety and warning systems. Every effort has been done to update the contents of the book to the present-day technology used in modern transport category aircraft manufactured by Boeing and Airbus industry. The text is profusely illustrated with block diagrams, schematic diagrams and a number of tables and glossary. Review questions have been included at the end of the each chapter for practice and self-study. The book is intended for teaching and study the topic for students of B.E., M.E. and students in Instrumentation Technology and Aircraft Engineering. It also introduces the subject to practising engineers and readers interested in aircraft instrumentation and to the flight crew




Jet Engines


Book Description

Broaden your knowledge of jet engine technology and its associated subjects. This is a technically comprehensive study of the components that constitute a gas turbine aero-engine and examines each part's design and function in practice. Concentrates on turbojet, turboprop and turbofan designs, and is applicable to civilian and military usage. Contains an overview of the main design types and fundamentals, and looks at air intakes, compressors, turbines and exhaust systems in great detail.




The Airliner Cabin Environment and the Health of Passengers and Crew


Book Description

Although poor air quality is probably not the hazard that is foremost in peoples' minds as they board planes, it has been a concern for years. Passengers have complained about dry eyes, sore throat, dizziness, headaches, and other symptoms. Flight attendants have repeatedly raised questions about the safety of the air that they breathe. The Airliner Cabin Environment and the Health of Passengers and Crew examines in detail the aircraft environmental control systems, the sources of chemical and biological contaminants in aircraft cabins, and the toxicity and health effects associated with these contaminants. The book provides some recommendations for potential approaches for improving cabin air quality and a surveillance and research program.




Commercial Aviation in the Jet Era and the Systems that Make it Possible


Book Description

This book discusses the multiple systems that make commercial jet travel safe and convenient. The author starts by tracing the evolution of commercial jets from the Boeing 707 to the double decker Airbus A380. The next 7 chapters discuss flight controls, along with the high lift surfaces (flaps and slats) that are essential to allow high speed, low drag aircraft to take-off and land. The other systems include Engines/Nacelles, Cabin Pressurization and Air Conditioning systems, Landing Gear and brakes, Fuel Systems, Instruments/Sensors, and finally Deicing systems for the wings, nacelles and external air speed sensors. Case studies describe a significant accident that arose from a failure in the various systems described. The final chapter summarizes the past 60 years of jet travel and describe how these systems have created a cheaper, safer mode of travel than any other.




Aeronautical Research in Germany


Book Description

From the pioneering glider flights of Otto Lilienthal (1891) to the advanced avionics of today’s Airbus passenger jets, aeronautical research in Germany has been at the forefront of the birth and advancement of aeronautics. On the occasion of the centennial commemoration of the Wright Brother’s first powered flight (December 1903), this English-language edition of Aeronautical Research in Germany recounts and celebrates the considerable contributions made in Germany to the invention and ongoing development of aircraft. Featuring hundreds of historic photos and non-technical language, this comprehensive and scholarly account will interest historians, engineers, and, also, all serious airplane devotees. Through individual contributions by 35 aeronautical experts, it covers in fascinating detail the milestones of the first 100 years of aeronautical research in Germany, within the broader context of the scientific, political, and industrial milieus. This richly illustrated and authoritative volume constitutes a most timely and substantial overview of the crucial contributions to the foundation and advancement of aeronautics made by German scientists and engineers.




Improving the Efficiency of Engines for Large Nonfighter Aircraft


Book Description

Because of the important national defense contribution of large, non-fighter aircraft, rapidly increasing fuel costs and increasing dependence on imported oil have triggered significant interest in increased aircraft engine efficiency by the U.S. Air Force. To help address this need, the Air Force asked the National Research Council (NRC) to examine and assess technical options for improving engine efficiency of all large non-fighter aircraft under Air Force command. This report presents a review of current Air Force fuel consumption patterns; an analysis of previous programs designed to replace aircraft engines; an examination of proposed engine modifications; an assessment of the potential impact of alternative fuels and engine science and technology programs, and an analysis of costs and funding requirements.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.