Handbook of Mathematical Functions


Book Description

An extensive summary of mathematical functions that occur in physical and engineering problems







CRC Standard Mathematical Tables and Formulae, 32nd Edition


Book Description

With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields.







Mathematical Functions and Their Approximations


Book Description

Mathematical Functions and their Approximations is an updated version of the Applied Mathematics Series 55 Handbook based on the 1954 Conference on Mathematical Tables, held at Cambridge, Massachusetts. The aim of the conference is to determine the need for mathematical tables in view of the availability of high speed computing machinery. This work is composed of 14 chapters that cover the machinery for the expansion of the generalized hypergeometric function and other functions in infinite series of Jacobi and Chebyshev polynomials of the first kind. Numerical coefficients for Chebyshev expansions of the more common functions are tabulated. Other chapters contain polynomial and rational approximations for certain class of G-functions, the coefficients in the early polynomials of these rational approximations, and the Padé approximations for many of the elementary functions and the incomplete gamma functions. The remaining chapters describe the development of analytic approximations and expansions. This book will prove useful to mathematicians, advance mathematics students, and researchers.




NIST Handbook of Mathematical Functions Hardback and CD-ROM


Book Description

The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.




Tables of Physical and Chemical Constants


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.







No-Nonsense Classical Mechanics


Book Description

Learning classical mechanics doesn’t have to be hard What if there was a way to learn classical mechanics without all the usual fluff? What if there were a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that No-Nonsense Classical Mechanics now exists. What will you learn from this book? Get to know all fundamental mechanics concepts — Grasp why we can describe classical mechanics using the Lagrangian formalism, the Newtonian formalism, or the Hamiltonian formalism and how these frameworks are connected.Learn to describe classical mechanics mathematically — Understand the meaning and origin of the most important equations: Newton's second law, the Euler-Lagrange equation and Hamilton's equations.Master the most important classical mechanics systems — Read fully annotated, step-by-step calculations and understand the general algorithm we use to describe them.Get an understanding you can be proud of — Learn about beautiful and deep insights like Noether's theorem or Liouville's theorem and how classical mechanics emerges in a proper limit of special relativity, quantum mechanics and general relativity. No-Nonsense Classical Mechanics is the most student-friendly book on classical nechanics ever written. Here’s why. First of all, it's is nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”.Each chapter, each section, and each page focuses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each equation comes from.The book contains no fluff since unnecessary content quickly leads to confusion. Instead, it ruthlessly focuses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually. In each chapter, you’ll find fully annotated equations and calculations are done carefully step-by-step. This makes it much easier to understand what’s going on in.Whenever a concept is used that was already introduced previously there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, there are summaries at the beginning of each chapter that make sure you won’t get lost.