Talking Data


Book Description

This book presents the reader with a set of diverse, carefully developed and clearly specified systems of transcription and coding, arising from contrasting theoretical perspectives, and presented as alternative choices, situated within the theoretical domain most natural to each. The perspectives represented include first and second language acquisition, interethnic and crosscultural interaction, information structure, and the study of discourse influences on linguistic expression. In the contributed chapters, the designers of these systems provide a distillation of collective experiences from the past quarter century, telling in their own words their perspectives on language processes, how these perspectives have shaped their choice of methodology in transcription and coding of natural language, and describing their systems in detail. Overview chapters by the editors then provide design principles and guidelines concerning issues pertinent to all systems, including such things as reliability, validity, ease of learning, computational tractability, and robustness against error. The final chapter is a compendium of existing computerized archives of language data and information sources together with details concerning data access and use.




Data Feminism


Book Description

A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.




Storytelling with Data


Book Description

Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!




Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World


Book Description

“Bruce Schneier’s amazing book is the best overview of privacy and security ever written.”—Clay Shirky Your cell phone provider tracks your location and knows who’s with you. Your online and in-store purchasing patterns are recorded, and reveal if you're unemployed, sick, or pregnant. Your e-mails and texts expose your intimate and casual friends. Google knows what you’re thinking because it saves your private searches. Facebook can determine your sexual orientation without you ever mentioning it. The powers that surveil us do more than simply store this information. Corporations use surveillance to manipulate not only the news articles and advertisements we each see, but also the prices we’re offered. Governments use surveillance to discriminate, censor, chill free speech, and put people in danger worldwide. And both sides share this information with each other or, even worse, lose it to cybercriminals in huge data breaches. Much of this is voluntary: we cooperate with corporate surveillance because it promises us convenience, and we submit to government surveillance because it promises us protection. The result is a mass surveillance society of our own making. But have we given up more than we’ve gained? In Data and Goliath, security expert Bruce Schneier offers another path, one that values both security and privacy. He brings his bestseller up-to-date with a new preface covering the latest developments, and then shows us exactly what we can do to reform government surveillance programs, shake up surveillance-based business models, and protect our individual privacy. You'll never look at your phone, your computer, your credit cards, or even your car in the same way again.




Making Data Talk


Book Description

The demand for health information continues to increase, but the ability of health professionals to provide it clearly remains variable. The aim of this book is (1) to summarize and synthesize research on the selection and presentation of data pertinent to public health, and (2) to provide practical suggestions, based on this research summary and synthesis, on how scientists and other public health practitioners can better communicate data to the public, policy makers, and the press in typical real-world situations. Because communication is complex and no one approach works for all audiences, the authors emphasize how to communicate data "better" (and in some instances, contrast this with how to communicate data "worse"), rather than attempting a cookbook approach. The book contains a wealth of case studies and other examples to illustrate major points, and actual situations whenever possible. Key principles and recommendations are summarized at the end of each chapter. This book will stimulate interest among public health practitioners, scholars, and students to more seriously consider ways they can understand and improve communication about data and other types of scientific information with the public, policy makers, and the press. Improved data communication will increase the chances that evidence-based scientific findings can play a greater role in improving the public's health.




Dark Data


Book Description

"Data describe and represent the world. However, no matter how big they may be, data sets don't - indeed cannot - capture everything. Data are measurements - and, as such, they represent only what has been measured. They don't necessarily capture all the information that is relevant to the questions we may want to ask. If we do not take into account what may be missing/unknown in the data we have, we may find ourselves unwittingly asking questions that our data cannot actually address, come to mistaken conclusions, and make disastrous decisions. In this book, David Hand looks at the ubiquitous phenomenon of "missing data." He calls this "dark data" (making a comparison to "dark matter" - i.e., matter in the universe that we know is there, but which is invisible to direct measurement). He reveals how we can detect when data is missing, the types of settings in which missing data are likely to be found, and what to do about it. It can arise for many reasons, which themselves may not be obvious - for example, asymmetric information in wars; time delays in financial trading; dropouts in clinical trials; deliberate selection to enhance apparent performance in hospitals, policing, and schools; etc. What becomes clear is that measuring and collecting more and more data (big data) will not necessarily lead us to better understanding or to better decisions. We need to be vigilant to what is missing or unknown in our data, so that we can try to control for it. How do we do that? We can be alert to the causes of dark data, design better data-collection strategies that sidestep some of these causes - and, we can ask better questions of our data, which will lead us to deeper insights and better decisions"--




Data Leadership


Book Description

Data has never been more important to your success than it is today, yet you are surrounded with data you can't trust, and the overwhelming burden of fixing it. Everyone deserves data that helps-not hurts-their organization.




Text, Speech and Dialogue


Book Description

This book constitutes the refereed proceedings of the 8th International Conference on Text, Speech and Dialogue, TSD 2005, held in Karlovy Vary, Czech Republic, in September 2005. The 52 revised full papers presented together with 6 invited papers were carefully reviewed and selected from 134 submissions. The papers present a wealth of state-of-the-art research results in the field of natural language processing with an emphasis on text, speech, and spoken dialogue ranging from theoretical and methodological issues to applications in various fields, such as information retrieval, the semantic Web, algorithmic learning, classification and clustering, speaker recognition and verification, and dialogue management.




Talking and Testing


Book Description

This book brings together a collection of current research on the assessment of oral proficiency in a second language. Fourteen chapters focus on the use of the language proficiency interview or LPI to assess oral proficiency. The volume addresses the central issue of validity in proficiency assessment: the ways in which the language proficiency interview is accomplished through discourse.Contributors draw on a variety of discourse perspectives, including the ethnography of speaking, conversation analysis, language socialization theory, sociolinguistic variation theory, human interaction research, and systemic functional linguistics. And for the first time, LPIs conducted in German, Korean, and Spanish are examined as well as interviews in English. This book sheds light on such important issues as how speaking ability can be defined independently of an LPI that is designed to assess it and the extent to which an LPI is an authentic representation of ordinary conversation in the target language. It will be of considerable interest to language testers, discourse analysts, second language acquisition researchers, foreign language specialists, and anyone concerned with proficiency issues in language teaching and testing.




IRS Service


Book Description