DNA Repair in Cancer Therapy


Book Description

DNA Repair and Cancer Therapy: Molecular Targets and Clinical Applications, Second Edition provides a comprehensive and timely reference that focuses on the translational and clinical use of DNA repair as a target area for the development of diagnostic biomarkers and the enhancement of cancer treatment. Experts on DNA repair proteins from all areas of cancer biology research take readers from bench research to new therapeutic approaches. This book provides a detailed discussion of combination therapies, in other words, how the inhibition of repair pathways can be coupled with chemotherapy, radiation, or DNA damaging drugs. Newer areas in this edition include the role of DNA repair in chemotherapy induced peripheral neuropathy, radiation DNA damage, Fanconi anemia cross-link repair, translesion DNA polymerases, BRCA1-BRCA2 pathway for HR and synthetic lethality, and mechanisms of resistance to clinical PARP inhibitors. - Provides a comprehensive overview of the basic and translational research in DNA repair as a cancer therapeutic target - Includes timely updates from the earlier edition, including Fanconi Anemia cross-link repair, translesion DNA polymerases, chemotherapy induced peripheral neuropathy, and many other new areas within DNA repair and cancer therapy - Saves academic, medical, and pharma researchers time by allowing them to quickly access the very latest details on DNA repair and cancer therapy - Assists researchers and research clinicians in understanding the importance of the breakthroughs that are contributing to advances in disease-specific research




The Cancer Handbook


Book Description

Provides a comprehensive overview of all major areas of cancer research and oncology. Bridging the gap between the molecular biology of cancer and clinical diagnosis and treatment, this online reference work provides a resource for medical and life sciences students, as well as all scientists, clinicians and researchers working in the cancer field and related biomedical areas.




Targeting the DNA Damage Response for Anti-Cancer Therapy


Book Description

Over the past decade a complex role for DNA damage response (DDR) in tumorigenesis has emerged. A proficient DDR has been shown to be a primary cause for cellular resistance to the very many DNA damaging drugs, and IR, that are widely used as standard-of-care across multiple cancer types. It has also been shown that defects in this network, predominantly within the ATM mediated signaling pathway, are commonly observed in cancers and may be a primary event during tumorigenesis. Such defects may promote a genomically unstable environment, facilitating the persistence of mutations, any of which may provide a growth or survival advantage to the developing tumor. In addition, these somatic defects provide opportunities to exploit a reliance on remaining repair pathways for survival, a process which has been termed synthetic lethality. As a result of all these observations there has been a great interest in targeting the DDR to provide anti-cancer agents that may have benefit as monotherapy in cancers with high background DNA damage levels or as a means to increase the efficacy of DNA damaging drugs and IR. In this book we will review a series of important topics that are of great interest to a broad range of academic, industrial and clinical researchers, including the basic science of the DDR, its role in tumorigenesis and in dictating response to DNA damaging drugs and IR. Additionally, we will focus on the several proteins that have been targeted in attempts to provide drug candidates, each of which appear to have quite distinct profiles and could represent very different opportunities to provide patient benefit.




Handbook of Targeted Cancer Therapy


Book Description

Make optimal use of the latest personalized therapeutic strategies with Handbook of Targeted Cancer Therapy! This concise, practical oncology reference examines more than 140 targeted therapy agents for which clinical trial data are available, and explains when and how you can use them to most effectively combat cancer. Approach clinical challenges from any direction with separate sections on Targets by Organ Site, Carcinogenesis from the Perspective of Targeted Therapy, Molecular Targets and Pathways, and Targeted Therapy Agents. Find information easily thanks to a color-coded format and an intuitive organization. Access the complete contents online and on mobile devices, with regular updates to include newly approved treatments. Important state of the art cancer information for caregivers, researchers, other health care professionals, and even patients




Fragment-Based Drug Discovery


Book Description

Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.




New Research Directions in DNA Repair


Book Description

This book is intended for students and scientists working in the field of DNA repair. Select topics are presented here to illustrate novel concepts in DNA repair, the cross-talks between DNA repair and other fundamental cellular processes, and clinical translational efforts based on paradigms established in DNA repair. The book should serve as a supplementary text in courses and seminars as well as a general reference for biologists with an interest in DNA repair.




The DNA Damage Response: Implications on Cancer Formation and Treatment


Book Description

The ?eld of cellular responses to DNA damage has attained widespread recognition and interest in recent years commensurate with its fundamental role in the ma- tenance of genomic stability. These responses, which are essential to preventing cellular death or malignant transformation, are organized into a sophisticated s- tem designated the “DNA damage response”. This system operates in all living organisms to maintain genomic stability in the face of constant attacks on the DNA from a variety of endogenous by-products of normal metabolism, as well as exogenous agents such as radiation and toxic chemicals in the environment. The response repairs DNA damage via an intricate cellular signal transduction network that coordinates with various processes such as regulation of DNA replication, tr- scriptional responses, and temporary cell cycle arrest to allow the repair to take place. Defects in this system result in severe genetic disorders involving tissue degeneration, sensitivity to speci?c damaging agents, immunode?ciency, genomic instability, cancer predisposition and premature aging. The ?nding that many of the crucial players involved in DNA damage response are structurally and functionally conserved in different species spurred discoveries of new players through similar analyses in yeast and mammals. We now understand the chain of events that leads to instantaneous activation of the massive cellular responses to DNA lesions. This book summarizes several new concepts in this rapidly evolving ?eld, and the advances in our understanding of the complex network of processes that respond to DNA damage.




Cell Death


Book Description

Poly (ADP-ribose) polymerase (PARP), also termed poly (ADP-ribose) synthetase (PARS) is a nuclear enzyme with a wide range of functions, including regulation of DNA repair, cell differentiation, and gene expression. More than a decade after the identification of PARP-like enzymatic activities in mammalian cells, a novel role was proposed for this e




Molecular mechanisms of cellular stress responses in cancer and their therapeutic implications


Book Description

In response to stress, cells can activate a myriad of signalling pathways to bring about a specific cellular outcome, including cell cycle arrest, DNA repair, senescence and apoptosis. This response is pivotal for tumour suppression as all of these outcomes result in restriction of the growth and/or elimination of damaged and pre-malignant cells. Thus, a large number of anti-cancer agents target specific components of stress response signalling pathways with the aim of causing tumour regression by stimulating cell death. However, the efficacy of these agents is often impaired due to mutations in genes that are involved in these stress-responsive signalling pathways and instead the oncogenic potential of a cell is increased leading to the initiation and/or progression of tumourigenesis. Moreover, these genetic defects can increase or contribute to resistance to chemotherapeutic agents and/or radiotherapy. Modulating the outcome of cellular stress responses towards cell death in tumour cells without affecting surrounding normal cells is thus one of the ultimate aims in the development of new cancer therapeutics. To achieve this aim, a detailed understanding of cellular stress response pathways and their aberrations in cancer is required. This Research topic aims to reflect the broadness and complexity of this important area of cancer research.




Targeted Radionuclide Therapy


Book Description

Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.