Introduction to Geometrical Optics


Book Description

This book is the culmination of twenty-five years of teaching Geometrical Optics. The volume is organised such that the single spherical refracting surface is the basic optical element. Spherical mirrors are treated as special cases of refraction, with the same applicable equations. Thin lens equations follow as combinations of spherical refracting surfaces while the cardinal points of the thick lens make it equivalent to a thin lens. Ultimately, one set of vergence equations are applicable to all these elements.The chapters are devoted to in-depth treatments of stops, pupils and ports; magnifiers, microscopes, telescopes, and camera lenses; ophthalmic instruments; resolving power and MTF; trigonometric ray tracing; and chromatic and monochromatic aberrations. There are over 100 worked examples, 400 homework problems and 400 illustrations.First published in 1994 by Penumbra Publishing Co.




Teaching About Geometric Optics


Book Description

Teaching About Geometric Optics guides physics teachers to help students develop a foundational understanding of geometric optics. The cornerstone of photonics systems, geometric optics, have applications in a wide range of industries including technology, medical, and military sectors. This book covers the basics of light propagation, reflection and refraction and the use of simple optical elements such as mirrors, prisms, lenses, and optical fibers.




Modern Geometrical Optics


Book Description

From basic terms and concepts to advanced optimization techniques-a complete, practical introduction to modern geometrical optics Most books on geometrical optics present only matrix methods. Modern Geometrical Optics, although it covers matrix methods, emphasizes y-nu ray tracing methods, which are used most commonly by optical engineers and are easier to adapt to third-order optics and y-??? diagrams. Moving by logical degrees from fundamental principles to advanced optical analysis and design methods, this book bridges the gap between the optical theory taught in introductory physics texts and advanced books on lens design. Providing the background material needed to understand advanced material, it covers important topics such as field of view, stops, pupils and windows, exact ray tracing, image quality, and optimization of the image. Important features of Modern Geometrical Optics include: * Examples of all important techniques presented * Extensive problem sets in each chapter * Optical analysis and design software * Chapters covering y-??? diagrams, optimization, and lens design This book is both a primer for professionals called upon to design optical systems and an ideal text for courses in modern geometrical optics. Companion Software Special lens design and analysis software capable of solving all problems presented in the book is available via Wiley's FTP site. This software also serves as an introduction to the use of commercial lens design software. Appendix C is a user's manual for the software.




Fundamentals of Geometrical Optics


Book Description

Optical imaging starts with geometrical optics, and ray tracing lies at its forefront. This book starts with Fermat’s principle and derives the three laws of geometrical optics from it. After discussing imaging by refracting and reflecting systems, paraxial ray tracing is used to determine the size of imaging elements and obscuration in mirror systems. Stops, pupils, radiometry, and optical instruments are also discussed. The chromatic and monochromatic aberrations are addressed in detail, followed by spot sizes and spot diagrams of aberrated images of point objects. Each chapter ends with a summary and a set of problems. The book ends with an epilogue that summarizes the imaging process and outlines the next steps within and beyond geometrical optics.




Geometric Optics


Book Description

This book—unique in the literature—provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica®. Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.







Geometrical Optics


Book Description

"This second volume of the series Lectures in Optics provides a comprehensive presentation of the Geometrical Optics effects. It discusses refraction and reflection off a single surface, flat and spherical. Then the essential building elements of optical power and beam vergence are presented: their importance is paramount in imaging, since the incident vergence is added to the element's power to produce the beam vergence leaving the optical element. Hence, imaging definitions and formulation are produced. The book then presents analytically all possible imaging arrangements with a single element, single lens, and a mirror. Then we proceed to add two more parameters: the extent of an element along the optical axis (thick lenses and lens systems) and the extent of an element perpendicular to the optical axis (stops and pupils). The ramifications on image quality due to the transverse restriction of light are presented, such as resolution and image blur. Finally, the book introduces the concepts of optical aberrations"--




Concise Optics


Book Description

This introductory text is a reader friendly treatment of geometrical and physical optics emphasizing problems and solved examples with detailed analysis and helpful commentary. The authors are seasoned educators with decades of experience teaching optics. Their approach is to gradually present mathematics explaining the physical concepts. It covers ray tracing to the wave nature of light, and introduces Maxwell’s equations in an organic fashion. The text then moves on to explains how to analyze simple optical systems such as spectacles for improving vision, microscopes, and telescopes, while also being exposed to contemporary research topics. Ajawad I. Haija is a professor of physics at Indiana University of Pennsylvania. M. Z. Numan is professor and chair of the department of physics at Indiana University of Pennsylvania. W. Larry Freeman is Emeritus Professor of Physics at Indiana University of Pennsylvania.




Reflective Optics


Book Description

This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unconventional designs examples. This book will be useful to anyone interested in the theory of optical image formation and in the actual design of image-forming instruments.




Fundamentals of Physics I


Book Description

A beloved introductory physics textbook, now including exercises and an answer key, explains the concepts essential for thorough scientific understanding In this concise book, R. Shankar, a well-known physicist and contagiously enthusiastic educator, explains the essential concepts of Newtonian mechanics, special relativity, waves, fluids, thermodynamics, and statistical mechanics. Now in an expanded edition—complete with problem sets and answers for course use or self-study—this work provides an ideal introduction for college-level students of physics, chemistry, and engineering; for AP Physics students; and for general readers interested in advances in the sciences. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics.