Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds


Book Description

This book highlights new developments in the teaching and learning of algebraic thinking with 5- to 12-year-olds. Based on empirical findings gathered in several countries on five continents, it provides a wealth of best practices for teaching early algebra. Building on the work of the ICME-13 (International Congress on Mathematical Education) Topic Study Group 10 on Early Algebra, well-known authors such as Luis Radford, John Mason, Maria Blanton, Deborah Schifter, and Max Stephens, as well as younger scholars from Asia, Europe, South Africa, the Americas, Australia and New Zealand, present novel theoretical perspectives and their latest findings. The book is divided into three parts that focus on (i) epistemological/mathematical aspects of algebraic thinking, (ii) learning, and (iii) teaching and teacher development. Some of the main threads running through the book are the various ways in which structures can express themselves in children’s developing algebraic thinking, the roles of generalization and natural language, and the emergence of symbolism. Presenting vital new data from international contexts, the book provides additional support for the position that essential ways of thinking algebraically need to be intentionally fostered in instruction from the earliest grades.




Early Algebra


Book Description

This survey of the state of the art on research in early algebra traces the evolution of a relatively new field of research and teaching practice. With its focus on the younger student, aged from about 6 years up to 12 years, this volume reveals the nature of the research that has been carried out in early algebra and how it has shaped the growth of the field. The survey, in presenting examples drawn from the steadily growing research base, highlights both the nature of algebraic thinking and the ways in which this thinking is being developed in the primary and early middle school student. Mathematical relations, patterns, and arithmetical structures lie at the heart of early algebraic activity, with processes such as noticing, conjecturing, generalizing, representing, justifying, and communicating being central to students’ engagement.




Knowing and Teaching Elementary Mathematics


Book Description

Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.




MSCEIS 2019


Book Description

The 7th Mathematics, Science, and Computer Science Education International Seminar (MSCEIS) was held by the Faculty of Mathematics and Natural Science Education, Universitas Pendidikan Indonesia (UPI) and the collaboration with 12 University associated in Asosiasi MIPA LPTK Indonesia (AMLI) consisting of Universitas Negeri Semarang (UNNES), Universitas Pendidikan Indonesia (UPI), Universitas Negeri Yogyakarta (UNY), Universitas Negeri Malang (UM), Universitas Negeri Jakarta (UNJ), Universitas Negeri Medan (UNIMED), Universitas Negeri Padang (UNP), Universitas Negeri Manado (UNIMA), Universitas Negeri Makassar (UNM), Universitas Pendidikan Ganesha (UNDHIKSA), Universitas Negeri Gorontalo (UNG), and Universitas Negeri Surabaya (UNESA). In this year, MSCEIS 2019 takes the following theme: "Mathematics, Science, and Computer Science Education for Addressing Challenges and Implementations of Revolution-Industry 4.0" held on October 12, 2019 in Bandung, West Java, Indonesia.




Problem Posing and Problem Solving in Mathematics Education


Book Description

This book presents both theoretical and empirical contributions from a global perspective on problem solving and posing (PS/PP) and their application, in relation to the teaching and learning of mathematics in schools. The chapters are derived from selected presentations in the PS/PP Topical Study Group in ICME14. Although mathematical problem posing is a much younger field of inquiry in mathematics education, this topic has grown rapidly. The mathematics curriculum frameworks in many parts of the world have incorporated problem posing as an instructional focus, building on problem solving as its foundation. The juxtaposition of problem solving and problem posing in mathematics presented in this book addresses the needs of the mathematics education research and practice communities at the present day. In particular, this book aims to address the three key points: to present an overview of research and development regarding students’ mathematical problem solving and posing; to discuss new trends and developments in research and practice on these topics; and to provide insight into the future trends of mathematical problem solving and posing.




Mathematical Teaching and Learning


Book Description

This book focusses on teaching and learning in elementary and middle school mathematics and suggests practices for teachers to help children be successful mathematical thinkers. Contributions from diverse theoretical and disciplinary perspectives are explored. Topics include the roles of technology, language, and classroom discussion in mathematics learning, the use of creativity, visuals, and teachers’ physical gestures to enhance problem solving, inclusive educational activities to promote children’s mathematics understanding, how learning in the home can enhance children’s mathematical skills, the application of mathematics learning theories in designing effective teaching tools, and a discussion of how students, teachers, teacher educators, and school boards differentially approach elementary and middle school mathematics. This book and its companion, Mathematical Cognition and Understanding, take an interdisciplinary perspective to mathematical learning and development in the elementary and middle school years. The authors and perspectives in this book draw from education, neuroscience, developmental psychology, and cognitive psychology. The book will be relevant to scholars/educators in the field of mathematics education and also those in childhood development and cognition. Each chapter also includes practical tips and implications for parents as well as for educators and researchers.







Algebra Structure Sense Development amongst Diverse Learners


Book Description

This volume emphasizes the role of effective curriculum design, teaching materials, and pedagogy to foster algebra structure sense at different educational levels. Positing algebra structure sense as fundamental to developing students’ broader mathematical maturity and advanced thinking, this text reviews conceptual, historical, cognitive, and semiotic factors, which influence the acquisition of algebra structure sense. It provides empirical evidence to demonstrate the feasibility of linking algebra structure sense to technological tools and promoting it amongst diverse learners. Didactic approaches include the use of adaptive digital environments, gamification, diagnostic and monitoring tools, as well as exercises and algebraic sequences of varied complexity. Advocating for a focus on both intuitive and formal knowledge, this volume will be of interest to students, scholars, and researchers with an interest in educational research, as well as mathematics education and numeracy.




Teaching Mathematics in Primary Schools


Book Description

'This is an outstanding book: it should be high on the list of any primary school teacher's set of references and a required text for pre-service teachers.' Australian Primary Mathematics Classroom In our technology-rich world, numeracy is just as important as the smartphone in your pocket. Students need to develop mathematical ways of seeing the world and strong problem-solving skills, and those foundations are taught in the primary school classroom. Teaching Mathematics in Primary Schools covers the mathematical content taught in primary and middle years, always emphasising how students can connect what they learn in mathematics with other curriculum areas and with the world beyond the classroom. The authors draw on the latest international research to show how teachers can develop a rich repertoire of classroom teaching techniques, and effective planning, assessment and reporting methods. They outline approaches to creating supportive learning environments for all students, and to building their knowledge and confidence in using mathematics. This third edition has been updated throughout and includes a new chapter on numeracy. Evidence-based uses of digital technologies to support learning and teaching are included in every chapter. With practical strategies that can be implemented in the classroom, this book is an invaluable resource for pre-service and early career primary and middle years mathematics teachers.




Mathematics as the Science of Patterns


Book Description

Mathematics as the Science of Patterns: Making the Invisible Visible to Students through Teaching introduces the reader to a collection of thoughtful, research-based works by authors that represent current thinking about mathematics, mathematics education, and the preparation of mathematics teachers. Each chapter focuses on mathematics teaching and the preparation of teachers who will enter classrooms to instruct the next generation of students in mathematics. The value of patterns to the teaching and learning of mathematics is well understood, both in terms of research and application. When we involve or appeal to pattern in teaching mathematics, it is usually because we are trying to help students to extract greater meaning, or enjoyment, or both, from the experience of learning environments within which they are occupied, and perhaps also to facilitate remembering. As a general skill it is thought that the ability to discern a pattern is a precursor to the ability to generalize and abstract, a skill essential in the early years of learning and beyond. Research indicates that the larger problem in teaching mathematics does not lie primarily with students; rather it is with the teachers themselves. In order to make changes for students there first needs to be a process of change for teachers. Understanding the place of patterns in learning mathematics is a predicate to understanding how to teach mathematics and how to use pedagogical reasoning necessary in teaching mathematics. Importantly, the lack of distinction created by the pedagogical use of patterns is not immediately problematic to the student or the teacher. The deep-seated cognitive patterns that both teachers and students bring to the classroom require change. Chapter 1 opens the book with a focus on mathematics as the science of patterns and the importance of patterns in mathematical problem solving, providing the reader with an introduction. The authors of Chapter 2 revisit the work of Po lya and the development and implementation of problem solving in mathematics. In Chapter 3, the authors present an argument for core pedagogical content knowledge in mathematics teacher preparation. The authors of Chapter 4 focus on preservice teachers’ patterns of conception as related to understanding number and operation. In Chapter 5 the authors examine the role of visual representation in exploring proportional reasoning, denoting the importance of helping learners make their thinking visible. The authors of Chapter 6 examine patterns and relationships, and the importance of each in assisting students’ learning and development in mathematical understanding. The authors of Chapter 7 examine the use of worked examples as a scalable practice, with emphasis on the importance of worked examples in teaching fraction magnitude and computation is discussed. In Chapter 8, the authors expand on the zone of proximal development to investigate the potential of Zankov’s Lesson in terms of students analyzing numerical equalities. The authors of Chapter 9 focus on high leverage mathematical practices in elementary pre-service teacher preparation, drawing into specific relief the APEX cycle to develop deep thinking. In Chapter 10, the author focuses on number talks and the engagement of students in mathematical reasoning, which provides opportunities for students to be sensemakers of mathematics. Chapter 11 presents an epilogue, focusing on the importance of recognizing the special nature of mathematics knowledge for teaching.