Teaching and Learning of Knot Theory in School Mathematics


Book Description

​This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching experiments at all levels which not only demonstrate the creativity and the professional expertise of the members of the study group, but also give a lively impression of students’ learning processes. In addition the reports show that elementary knot theory is not just a preparation for advanced knot theory but also an excellent means to develop spatial thinking. The book can be highly recommended for several reasons: First of all, and that is the main intention of the book, it serves as a comprehensive text for teaching and learning knot theory. Moreover it provides a model for cooperation between mathematicians and mathematics educators based on substantial mathematics. And finally it is a thorough introduction to the Japanese art of lesson studies–again in the context of substantial mathematics.




Teaching and Learning of Knot Theory in School Mathematics


Book Description

​This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching experiments at all levels which not only demonstrate the creativity and the professional expertise of the members of the study group, but also give a lively impression of students’ learning processes. In addition the reports show that elementary knot theory is not just a preparation for advanced knot theory but also an excellent means to develop spatial thinking. The book can be highly recommended for several reasons: First of all, and that is the main intention of the book, it serves as a comprehensive text for teaching and learning knot theory. Moreover it provides a model for cooperation between mathematicians and mathematics educators based on substantial mathematics. And finally it is a thorough introduction to the Japanese art of lesson studies–again in the context of substantial mathematics.




The Knot Book


Book Description

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.




Why Knot?


Book Description

Colin Adams, well-known for his advanced research in topology and knot theory, is the author of this exciting new book that brings his findings and his passion for the subject to a more general audience. This beautifully illustrated comic book is appropriate for many mathematics courses at the undergraduate level such as liberal arts math, and topology. Additionally, the book could easily challenge high school students in math clubs or honors math courses and is perfect for the lay math enthusiast. Each copy of Why Knot? is packaged with a plastic manipulative called the Tangle R. Adams uses the Tangle because "you can open it up, tie it in a knot and then close it up again." The Tangle is the ultimate tool for knot theory because knots are defined in mathematics as being closed on a loop. Readers use the Tangle to complete the experiments throughout the brief volume. Adams also presents a illustrative and engaging history of knot theory from its early role in chemistry to modern applications such as DNA research, dynamical systems, and fluid mechanics. Real math, unreal fun!




The Proceedings of the 12th International Congress on Mathematical Education


Book Description

This book comprises the Proceedings of the 12th International Congress on Mathematical Education (ICME-12), which was held at COEX in Seoul, Korea, from July 8th to 15th, 2012. ICME-12 brought together 3500 experts from 92 countries, working to understand all of the intellectual and attitudinal challenges in the subject of mathematics education as a multidisciplinary research and practice. This work aims to serve as a platform for deeper, more sensitive and more collaborative involvement of all major contributors towards educational improvement and in research on the nature of teaching and learning in mathematics education. It introduces the major activities of ICME-12 which have successfully contributed to the sustainable development of mathematics education across the world. The program provides food for thought and inspiration for practice for everyone with an interest in mathematics education and makes an essential reference for teacher educators, curriculum developers and researchers in mathematics education. The work includes the texts of the four plenary lectures and three plenary panels and reports of three survey groups, five National presentations, the abstracts of fifty one Regular lectures, reports of thirty seven Topic Study Groups and seventeen Discussion Groups.




Knot Theory


Book Description

Knot Theory, a lively exposition of the mathematics of knotting, will appeal to a diverse audience from the undergraduate seeking experience outside the traditional range of studies to mathematicians wanting a leisurely introduction to the subject. Graduate students beginning a program of advanced study will find a worthwhile overview, and the reader will need no training beyond linear algebra to understand the mathematics presented. The interplay between topology and algebra, known as algebraic topology, arises early in the book when tools from linear algebra and from basic group theory are introduced to study the properties of knots. Livingston guides readers through a general survey of the topic showing how to use the techniques of linear algebra to address some sophisticated problems, including one of mathematics's most beautiful topics—symmetry. The book closes with a discussion of high-dimensional knot theory and a presentation of some of the recent advances in the subject—the Conway, Jones, and Kauffman polynomials. A supplementary section presents the fundamental group which is a centerpiece of algebraic topology.




The Mathematics of Knots


Book Description

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.




Knots and Applications


Book Description

This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.




Connecting Mathematics and Mathematics Education


Book Description

This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account.




Contemporary Environmental and Mathematics Education Modelling Using New Geometric Approaches


Book Description

This book takes a fresh approach to using educational tools to solve profound problems in societies. The authors bring perspectives from curriculum studies, mathematics education, environmental education, and Indigenous epistemologies to a new consideration of “geometries to think with”. These tools reveal the wealth of resources and interrelationships in our world that have the potential to reconfigure and revitalize education. The transdisciplinary nature of the chapters and authors emphasizes the need for thinking beyond boundaries, while respecting the wisdom inherent in intellectual disciplines and traditions.