Teaching and Learning STEM


Book Description

The widely used STEM education book, updated Teaching and Learning STEM: A Practical Guide covers teaching and learning issues unique to teaching in the science, technology, engineering, and math (STEM) disciplines. Secondary and postsecondary instructors in STEM areas need to master specific skills, such as teaching problem-solving, which are not regularly addressed in other teaching and learning books. This book fills the gap, addressing, topics like learning objectives, course design, choosing a text, effective instruction, active learning, teaching with technology, and assessment—all from a STEM perspective. You’ll also gain the knowledge to implement learner-centered instruction, which has been shown to improve learning outcomes across disciplines. For this edition, chapters have been updated to reflect recent cognitive science and empirical educational research findings that inform STEM pedagogy. You’ll also find a new section on actively engaging students in synchronous and asynchronous online courses, and content has been substantially revised to reflect recent developments in instructional technology and online course development and delivery. Plan and deliver lessons that actively engage students—in person or online Assess students’ progress and help ensure retention of all concepts learned Help students develop skills in problem-solving, self-directed learning, critical thinking, teamwork, and communication Meet the learning needs of STEM students with diverse backgrounds and identities The strategies presented in Teaching and Learning STEM don’t require revolutionary time-intensive changes in your teaching, but rather a gradual integration of traditional and new methods. The result will be a marked improvement in your teaching and your students’ learning.




STEM Education for the 21st Century


Book Description

This book chronicles the revolution in STEM teaching and learning that has arisen from a convergence of educational research, emerging technologies, and innovative ways of structuring both the physical space and classroom activities in STEM higher education. Beginning with a historical overview of US higher education and an overview of diversity in STEM in the US, the book sets a context in which our present-day innovation in science and technology urgently needs to provide more diversity and inclusion within STEM fields. Research-validated pedagogies using active learning and new types of research-based curriculum is transforming how physics, biology and other fields are taught in leading universities, and the book gives profiles of leading innovators in science education and examples of exciting new research-based courses taking root in US institutions. The book includes interviews with leading scientists and educators, case studies of new courses and new institutions, and descriptions of site visits where new trends in 21st STEM education are being developed. The book also takes the reader into innovative learning environments in engineering where students are empowered by emerging technologies to develop new creative capacity in their STEM education, through new centers for design thinking and liberal arts-based engineering. Equally innovative are new conceptual frameworks for course design and learning, and the book explores the concepts of Scientific Teaching, Backward Course Design, Threshold Concepts and Learning Taxonomies in a systematic way with examples from diverse scientific fields. Finally, the book takes the reader inside the leading centers for online education, including Udacity, Coursera and EdX, interviews the leaders and founders of MOOC technology, and gives a sense of how online education is evolving and what this means for STEM education. This book provides a broad and deep exploration into the historical context of science education and into some of the cutting-edge innovations that are reshaping how leading universities teach science and engineering. The emergence of exponentially advancing technologies such as synthetic biology, artificial intelligence and materials sciences has been described as the Fourth Industrial Revolution, and the book explores how these technologies will shape our future will bring a transformation of STEM curriculum that can help students solve many the most urgent problems facing our world and society.




STEM by Design


Book Description

How do you create effective STEM classrooms that energize students, help them grow into creative thinkers and collaborators, and prepare them for their futures? This practical book from expert Anne Jolly has all the answers and tools you need to get started or enhance your current program. Based on the author’s popular MiddleWeb blog of the same name, STEM by Design reveals the secrets to successful lessons in which students use science, math, and technology to solve real-world engineering design problems. You’ll learn how to: Select and adapt quality existing STEM lessons that present authentic problems, allow for creative approaches, and engage students in meaningful teamwork; Create your own student-centered STEM lessons based on the Engineering Design Process; Assess students’ understanding of basic STEM concepts, their problem-solving abilities, and their level of engagement with the material; Teach STEM in after-school programs to further build on concepts covered in class; Empower girls to aspire to careers in STEM and break down the barriers of gender bias; Tap into STEM's project-based learning style to attract and engage all students. Throughout this user-friendly book, you’ll find design tools such as checklists, activities, and assessments to aid you in developing or adapting STEM lessons. These tools, as well as additional teacher resources, are also available as free downloads from the book’s website, http://www.stem-by-design.com.




STEM Lesson Essentials, Grades 3-8


Book Description

Want to know how to implement authentic STEM teaching and learning into your classroom? STEM Lesson Essentials provides all the tools and strategies you'll need to design integrated, interdisciplinary STEM lessons and units that are relevant and exciting to your students. With clear definitions of both STEM and STEM literacy, the authors argue that STEM in itself is not a curriculum, but rather a way of organizing and delivering instruction by weaving the four disciplines together in intentional ways. Rather than adding two new subjects to the curriculum, the engineering and technology practices can instead be blended into existing math and science lessons in ways that engage students and help them master 21st century skills.




STEM Education: An Emerging Field of Inquiry


Book Description

This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods.




Teaching STEM in the Preschool Classroom


Book Description

This book is designed to build educators’ confidence and competence so they can bring STEM to life with young children. The authors encourage pre–K teachers to discover the value of engaging preschoolers in scientific inquiry, technological explorations, engineering challenges, and math experiences based on learning trajectories. They explain the big ideas in STEM, emphasizing teaching strategies that support these activities (such as language-rich STEM interactions), and describe ways to integrate concepts across disciplines. The text features research-based resources, examples of field-tested activities, and highlights from the classroom. Drawing from a professional development model that was developed with funding from the National Science Foundation, this book is an essential resource for anyone who wants to support preschool children to be STEM thinkers and doers. “I have read a lot of really good early childhood science education books over the years, and as far as I am concerned, this is the best one yet.” —From the Foreword by Betty Zan, University of Northern Iowa “This excellent book shows that the important ideas of STEM are within every teacher’s and child’s grasp.” —Douglas Clements, University of Denver “Teaches STEM content while sharing strategies for robust and developmentally appropriate instructional practice. This book is the real deal!” —Beth Graue, University of Wisconsin–Madison




STEM Education


Book Description

Advancing education in science, technology, engineering, and mathematics (STEM) in U.S. public schools has been at the forefront of educational issues and a national priority (President's Council of Advisors on Science and Technology, 2010). The nation's changing demographics and continued need to remain globally competitive makes it clear that colleges and universities must increase the number of teachers trained in STEM education (Katehi, Pearson, & Feder, 2009). Students in U.S. schools are academically behind their international peers in STEM areas. Currently, the U.S. ranks 17th in science and 25th in mathematics among other nations (National Center for Education Statistics, 2011). President Obama stated that it is a "national imperative", to train 100,000 STEM college graduates over the next decade (America Chemical Society, 2012). In addition, colleges and universities will need to prepare 25,000 new K-12 teachers in STEM (Boynton, 2012). In order to meet this ambitious goal, U.S. teachers/education professionals must educate and engage students to pursue STEM disciplines including attracting underrepresented groups (eg: girls and persons of colour) into the STEM pipeline (CADRE, 2011; Custer & Daugherty, 2009). There is universal agreement that teachers do matter and, moreover, there exists empirical support that student learning is affected by the qualifications of teachers. This is especially true in mathematics, which is the foundation for all future STEM learning (CADRE, 2011). Although almost all U.S. teachers hold at least basic qualifications (e.g., a bachelor's degree and teaching certification), many are teaching subjects for which they lack adequate academic training, certification, or both.




STEM Education in the Primary School


Book Description

STEM Education in the Primary School introduces pre-service teachers to the theory, skills and practice of teaching STEM through a project-based learning approach. Science, technology, engineering and mathematics are presented as professions, mindsets and practices, and each element of STEM is integrated with the Australian Curriculum through a school garden project case study. Popular STEM topic areas, such as health, shelter and space, are explored using tested and age-appropriate project examples that illustrate the translation of STEM ideas to classroom practice. This textbook connects current research in STEM education to teaching practice through detailed discussion of topics including assessment, learning spaces, community and STEM futures. Encouraging readers to consolidate their knowledge, the text is supported by short-answer and reflection questions, information boxes and real-world scenarios. Suggested activities and downloadable templates in the VitalSource enhanced eBook provide guidance for readers when implementing projects and practices in their classroom.




STEM in Science Education and S in STEM


Book Description

This edited volume focuses on the reform and research of STEM education from international perspectives considering the sociocultural perspectives of different educational contexts. It shows the impact of political and cultural contexts on the reform of science education.




Effective Instruction for STEM Disciplines


Book Description

Praise for Effective Instruction for STEM Disciplines "The world of today's learners is a multimode, information-intensive universe of interactive bursts and virtual exchanges, yet our teaching methods retain the outdated characteristics of last generation's study-and-drill approach. New pedagogical methods, detailed and justified in this groundbreaking work, are essential to prepare students to confront the concerns of the future. The book challenges our traditional assumptions and informs the science, technology, engineering, and mathematics (STEM) community of the latest research on how the brain learns and retains information, how enhanced student engagement with subject material and its context is essential to deep learning, and how to use this knowledge to structure STEM education approaches that work." —DAVID V. KERNS, JR., Franklin and Mary Olin Distinguished Professor of Electrical and Computer Engineering, and founding provost, Olin College "Every STEM faculty member should have this book. It provides a handy introduction to the 'why and how' of engaging students in the learning process." —DAVID VOLTMER, professor emeritus, Rose-Hulman Institute of Technology, and American Society for Engineering Education Fellow "The poor quality of math and science education and the shortage of well-qualified graduates are acknowledged almost daily in the U.S. press. Here the authors provide much-needed insights for educators seeking to improve the quality of STEM education as well as to better prepare students to solve the problems they will confront in our increasingly technology-driven world." —KEITH BUFFINTON, interim dean of engineering, Bucknell University