Computer Science in K-12


Book Description

Coding teaches our students the essence of logical thinking and problem solving while also preparing them for a world in which computing is becoming increasingly pervasive. While there's excitement and enthusiasm about programming becoming an intrinsic part of K-12 curricula the world over, there's also growing anxiety about preparing teachers to teach effectively at all grade levels.This book strives to be an essential, enduring, practical guide for every K-12 teacher anywhere who is either teaching or planning to teach computer science and programming at any grade level. To this end, readers will discover:? An A-to-Z organization that affords comprehensive insight into teaching introductory programming.? 26 chapters that cover foundational concepts, practices and well-researched pedagogies related to teaching introductory programming as an integral part of K-12 computer science. Cumulatively these chapters address the two salient building blocks of effective teaching of introductory programming-what content to teach (concepts and practices) and how to teach (pedagogy).? Concrete ideas and rich grade-appropriate examples inspired by practice and research for classroom use.? Perspectives and experiences shared by educators and scholars who are actively practicing and/or examiningthe teaching of computer science and programming in K-12 classrooms.




Getting Smart


Book Description

A comprehensive look at the promise and potential of online learning In our digital age, students have dramatically new learning needs and must be prepared for the idea economy of the future. In Getting Smart, well-known global education expert Tom Vander Ark examines the facets of educational innovation in the United States and abroad. Vander Ark makes a convincing case for a blend of online and onsite learning, shares inspiring stories of schools and programs that effectively offer "personal digital learning" opportunities, and discusses what we need to do to remake our schools into "smart schools." Examines the innovation-driven world, discusses how to combine online and onsite learning, and reviews "smart tools" for learning Investigates the lives of learning professionals, outlines the new employment bargain, examines online universities and "smart schools" Makes the case for smart capital, advocates for policies that create better learning, studies smart cultures




Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments


Book Description

The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation.




Guide to Teaching Computer Science


Book Description

This textbook presents both a conceptual framework and detailed implementation guidelines for computer science (CS) teaching. Updated with the latest teaching approaches and trends, and expanded with new learning activities, the content of this new edition is clearly written and structured to be applicable to all levels of CS education and for any teaching organization. Features: provides 110 detailed learning activities; reviews curriculum and cross-curriculum topics in CS; explores the benefits of CS education research; describes strategies for cultivating problem-solving skills, for assessing learning processes, and for dealing with pupils’ misunderstandings; proposes active-learning-based classroom teaching methods, including lab-based teaching; discusses various types of questions that a CS instructor or trainer can use for a range of teaching situations; investigates thoroughly issues of lesson planning and course design; examines the first field teaching experiences gained by CS teachers.




Mindstorms


Book Description

In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.




Stuck in the Shallow End, updated edition


Book Description

Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode).




Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education


Book Description

As technology continues to develop and prove its importance in modern society, certain professions are acclimating. Aspects such as computer science and computational thinking are becoming essential areas of study. Implementing these subject areas into teaching practices is necessary for younger generations to adapt to the developing world. There is a critical need to examine the pedagogical implications of these technological skills and implement them into the global curriculum. The Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education is a collection of innovative research on the methods and applications of computer science curriculum development within primary and secondary education. While highlighting topics including pedagogical implications, comprehensive techniques, and teacher preparation models, this book is ideally designed for teachers, IT consultants, curriculum developers, instructional designers, educational software developers, higher education faculty, administrators, policymakers, researchers, and graduate students.




Integrating Computer Science Across the Core


Book Description

Integrating Computer Science Across the Core is a guide to systematizing computer science and computational thinking practices in your school. While most books explain how to teach computer science as a stand-alone discipline, this innovative approach will help you leverage your existing curriculum to deepen and expand students’ learning experiences in all content areas. Effective, equitable, and sustainable, this blueprint provides principals, curriculum directors, directors of technology, and other members of your school or district leadership team with suggested organizational structures, tips for professional learning, and key resources like planning instruments.




Computational Thinking and Coding for Every Student


Book Description

Empower tomorrow’s tech innovators Our students are avid users and consumers of technology. Isn’t it time that they see themselves as the next technological innovators, too? Computational Thinking and Coding for Every Student is the beginner’s guide for K-12 educators who want to learn to integrate the basics of computer science into their curriculum. Readers will find Practical strategies for teaching computational thinking and the beginning steps to introduce coding at any grade level, across disciplines, and during out-of-school time Instruction-ready lessons and activities for every grade Specific guidance for designing a learning pathway for elementary, middle, or high school students Justification for making coding and computer science accessible to all A glossary with definitions of key computer science terms, a discussion guide with tips for making the most of the book, and companion website with videos, activities, and other resources Momentum for computer science education is growing as educators and parents realize how fundamental computing has become for the jobs of the future. This book is for educators who see all of their students as creative thinkers and active contributors to tomorrow’s innovations. "Kiki Prottsman and Jane Krauss have been at the forefront of the rising popularity of computer science and are experts in the issues that the field faces, such as equity and diversity. In this book, they’ve condensed years of research and practitioner experience into an easy to read narrative about what computer science is, why it is important, and how to teach it to a variety of audiences. Their ideas aren’t just good, they are research-based and have been in practice in thousands of classrooms...So to the hundreds and thousands of teachers who are considering, learning, or actively teaching computer science—this book is well worth your time." Pat Yongpradit Chief Academic Officer, Code.org




Computer Science Education in the 21st Century


Book Description

The world is experiencing unprecedented rapidity of change, originating from pervasive technological developments. This book considers the effects of such rapid change from within computing disciplines, by allowing computing educationalists to deliver a considered verdict on the future of their discipline. The targeted future, the year 2020, was chosen to be distant enough to encourage authors to risk being visionary, while being close enough to ensure some anchorage to reality. The result is a scholarly set of contributions expressing the visions, hopes, concerns, predictions and analyses of trends for the future.