Teaching Science Thinking


Book Description

Teach your students how to think like scientists. This book shows you practical ways to incorporate science thinking in your classroom using simple "Thinking Tasks" that you can insert into any lesson. What is science thinking and how can you possibly teach and assess it? How is science thinking incorporated into the Next Generation Science Standards (NGSS) and how can it be weaved into your curriculum? This book answers these questions. This practical book provides a clear, research-verified framework for helping students develop scientific thinking as required by the NGSS. Your students will not be memorizing content but will become engaged in the real work scientists do, using critical thinking patterns such as: Recognizing patterns, Inventing new hypotheses based on observations, Separating causes from correlations, Determining relevant variables and isolating them, Testing hypotheses, and Thinking about their own thinking and the relative value of evidence. The book includes a variety of sample classroom activities and rubrics, as well as frameworks for creating your own tools. Designed for the busy teacher, this book also shows you quick and simple ways to add deep science thinking to existing lessons.




Ambitious Science Teaching


Book Description

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.




Teaching Students to Think Like Scientists


Book Description

It is essential that students learn to examine, review, and evaluate knowledge and ideas through a process of scientific investigation and argumentation. Using these instructional methods and lesson scenarios, teachers of all disciplines will gain the tools needed to offer students a richer, lasting understanding of science, its concepts, and its place in their lives and the global community.




Visible Learning for Science, Grades K-12


Book Description

In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.




Creating Scientists


Book Description

Learn how to shift from teaching science content to teaching a more hands-on, inquiry-based approach, as required by the new Next Generation Science Standards. This practical book provides a clear, research verified framework for building lessons that teach scientific process and practice abilities, such as gathering and making sense of data, constructing explanations, designing experiments, and communicating information. Creating Scientists features reproducible, immediately deployable tools and handouts that you can use in the classroom to assess your students’ learning within the domains for the NGSS or any standards framework with focus on the integration of science practice with content. This book is an invaluable resource for educators seeking to build a "community of practice," where students discover ideas through well-taught, hands-on, authentic science experiences that foster an innate love for learning how the world works.




The Teaching Brain


Book Description

“A significant contribution to understanding the interaction among teachers, students, the environment, and the content of learning” (Herbert Kohl, education advocate and author). What is at work in the mind of a five-year-old explaining the game of tag to a new friend? What is going on in the head of a thirty-five-year-old parent showing a first-grader how to button a coat? And what exactly is happening in the brain of a sixty-five-year-old professor discussing statistics with a room full of graduate students? While research about the nature and science of learning abounds, shockingly few insights into how and why humans teach have emerged—until now. Countering the dated yet widely held presumption that teaching is simply the transfer of knowledge from one person to another, The Teaching Brain weaves together scientific research and real-life examples to show that teaching is a dynamic interaction and an evolutionary cognitive skill that develops from birth to adulthood. With engaging, accessible prose, Harvard researcher Vanessa Rodriguez reveals what it actually takes to become an expert teacher. At a time when all sides of the teaching debate tirelessly seek to define good teaching—or even how to build a better teacher—The Teaching Brain upends the misguided premises for how we measure the success of teachers. “A thoughtful analysis of current educational paradigms . . . Rodriguez’s case for altering pedagogy to match the fluctuating dynamic forces in the classroom is both convincing and steeped in common sense.” —Publishers Weekly




Place-Based Science Teaching and Learning


Book Description

Forty classroom-ready science teaching and learning activities for elementary and middle school teachers Grounded in theory and best-practices research, this practical text provides elementary and middle school teachers with 40 place-based activities that will help them to make science learning relevant to their students. This text provides teachers with both a rationale and a set of strategies and activities for teaching science in a local context to help students engage with science learning and come to understand the importance of science in their everyday lives.




Teaching for Conceptual Understanding in Science


Book Description

What do you get when you bring together two of NSTA’s bestselling authors to ponder ways to deepen students’ conceptual understanding of science? A fascinating combination of deep thinking about science teaching, field-tested strategies you can use in your classroom immediately, and personal vignettes all educators can relate to and apply themselves. Teaching for Conceptual Understanding in Science is by Richard Konicek-Moran, a researcher and professor who wrote the Everyday Science Mysteries series, and Page Keeley, a practitioner and teacher educator who writes the Uncovering Student Ideas in Science series. Written in an appealing, conversational style, this new book explores where science education has been and where it’s going; emphasizes how knowing the history and nature of science can help you engage in teaching for conceptual understanding and conceptual change; stresses the importance of formative assessment as a pathway to conceptual change; and provides a bridge between research and practice. This is the kind of thought-provoking book that can truly change the way you teach. Whether you read each chapter in sequence or start by browsing the topics in the vignettes, Konicek-Moran and Keeley will make you think—really think—about the major goal of science education in the 21st century: to help students understand science at the conceptual level so they can see its connections to other fields, other concepts, and their own lives.




The Sourcebook for Teaching Science, Grades 6-12


Book Description

The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.




Teaching Science


Book Description

Reflective practice is at the heart of effective teaching, and this book helps you develop into a reflective teacher of science. Everything you need is here: guidance on developing your analysis and self-evaluation skills, the knowledge of what you are trying to achieve and why, and examples of how experienced teachers deliver successful lessons. The book shows you how to plan lessons, how to make good use of resources, and how to assess pupils' progress effectively. Each chapter contains points for reflection, which encourage you to break off from your reading and think about the challenging questions that you face as a new teacher. The book comes with access to a companion website, www.sagepub.co.uk/secondary.