Processing of Particulate Solids


Book Description

Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.







Design and Processing of Particulate Products


Book Description

A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.




Analysis, Synthesis and Design of Chemical Processes


Book Description

The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.




Model-Based Control of Particulate Processes


Book Description

Particulate processes are characterized by the co-presence of a contin uous phase and a dispersed (particulate) phase, and are widely used in industry for the manufacturing of many high-value products. Examples include the crystallization of proteins for pharmaceutical applications, the emulsion polymerization reactors for the production of latex, the aerosol synthesis of titania powder used in the production of white pig ments, and the thermal spray processing of nanostructured coatings. It is now well understood that the physico-chemical and mechanical properties of materials made with particulates depend heavily on the characteristics of the corresponding particle size distribution. This fact, together with recent advances in dynamics of infinite-dimensional sys tems and nonlinear control theory, has motivated extensive research on model-based control of particulate processes using population balances to achieve tight control of particle size distributions. This book - the first of its kind - presents general methods for the synthesis of nonlinear, robust and constrained feedback controllers for broad classes of particulate process models and illustrates their applica tions to industrially-important crystallization, aerosol and thermal spray processes. The controllers use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output tracking, attenuation of the effect of model uncertainty and han dling of actuator saturation.







Mesoscale Modeling in Chemical Engineering Part I


Book Description

Focusing Mesoscales of Multiscale Problems in Chemical Engineering, a volume in the Advances in Chemical Engineering series provides readers with the personal views of recognized authorities who present assessments of the state-of-the-art in the field and help readers develop an understanding of its further evolution. Subjects covered in the book are not limited to the classical chemical engineering disciplines. Contributions connecting chemical engineering to related scientific fields, either providing a fundamental basis or introducing new concepts and tools, are encouraged. This volume aims to create a balance between well developed areas such as process industry, transformation of materials, energy, and environmental issues, and areas where applications of chemical engineering are more recent or emerging. Contains reviews by leading authorities in their respective areas Provides up-to-date reviews of the latest techniques in the modeling of catalytic processes Includes a broad mix of US and European authors, as well as academic/industrial/research institute perspectives Provides discussions on the connections between computation and experimental methods




Fundamentals of Particle Technology


Book Description

Fundamentals of Particle Technology is designed to assist the understanding of how particulate materials behave during processing and is written with engineers and scientists, who are new to the subject, in mind. It is accessible, in both cost and style, and is illustrated with numerous line diagrams. Most of the 16 chapters end with questions in multiple choice format. This helps problem decomposition and the reader can see each step required to arrive at an overall process solution. If the reader makes a mistake with any of the steps he, or she, usually does not see their answer and will immediately know where they have gone wrong. The aspects of Particle Technology covered include: particle characterisation, solid/liquid and solid/gas separations, fluidisation, flow of (and in) dispersions, powder mixing, storage, hazards, crushing and colloidal interaction. Extensive Internet support and referencing is provided. The teaching style adopted is the result of experience gained from presenting the subject for over 30 years at both undergraduate and postgraduate level.




Particulate Processes


Book Description