Encyclopedia of World Climatology


Book Description

Today, given the well-publicized impacts of events such as El Niño, there is an unequaled public awareness of how climate affects the quality of life and environment. Such awareness has created an increasing demand for accurate climatological information. This information is now available in one convenient, accessible source, the Encyclopedia of World Climatology. This comprehensive volume covers all the main subfields of climatology, supplies information on climates in major continental areas, and explains the intricacies of climatic processes. The level of presentation will meet the needs of specialists, university students, and educated laypersons. A successor to the 1986 Encyclopedia of Climatology, this compendium provides a clear explanation of current knowledge and research directions in modern climatology. This new encyclopedia emphasizes climatological developments that have evolved over the past twenty years. It offers more than 200 informative articles prepared by 150 experts on numerous subjects, ranging from standard areas of study to the latest research studies. The relationship between climatology and both physical and social science is fully explored, as is the significance of climate for our future well-being. The information is organized for speedy access. Entries are conveniently arranged in alphabetical order, thoroughly indexed, and cross-referenced. Every entry contains useful citations to additional source materials. The Editor John E. Oliver is Professor Emeritus at Indiana State University. He holds a B.Sc. from London University, and a MA and Ph.D from Columbia University. He taught at Columbia University and then at Indiana State where he was formerly Chair of the Geography-Geology Department, and Assoc iate Dean, College of Arts and Sciences. He has written many books and journal articles in Climatology, Applied Climatology and Physical Geography.




Hydrometeorology


Book Description

This second edition explores some of the latest techniques used to provide forecasts for a wide range of water-related applications in areas such as floods, droughts, water resources and environmental impacts. The practical uses can range from decisions on whether to issue a flood warning through to providing longer-term advice such as on when to plant and harvest crops or how to operate reservoirs for water supply and hydropower schemes. It provides an introduction to the topic for practitioners and researchers and useful background for courses in areas such as civil engineering, water resources, meteorology and hydrology. As in the first edition, the first section considers topics such as monitoring and forecasting techniques, demand forecasting and how forecasts are interpreted when issuing warnings or advice. Separate chapters are now included for meteorological and catchment monitoring techniques allowing a more in-depth discussion of topics such as weather radar and water quality observations. The chapters on meteorological and hydrological forecasting now include a greater emphasis on rainfall forecasting and ensemble and probabilistic techniques. Regarding the interpretation of forecasts, an updated chapter discusses topics such as approaches to issuing warnings and the use of decision support systems and risk-based techniques. Given the rapid pace of development in flash flood fore casting techniques, flash floods and slower responding riverine floods are now considered in separate chapters. This includes more detail on forecasting floods in large river basins and on methods for providing early warnings of debris flows, surface water flooding and ice jam and dam break floods. Later chapters now include more information on developing areas such as environmental modelling and seasonal flow forecasting. As before examples of operational systems are provided throughout and the extensive sets of references which were a feature of the first edition have been revised and updated. Key themes • floods • droughts • meteorological observations • catchment monitoring • meteorological forecasts • hydrological forecasts • demand forecasts • reservoirs • water resources • water quality • decision support • data assimilation • probabilistic forecasts Kevin Sene is a civil engineer and researcher with wide experience in flood risk management, water resources and hydrometeorology. He has previously published books on flood warning, forecasting and emergency response and flash floods (Springer 2008, 2013).







Snow Ecology


Book Description

A multidisciplinary 2001 overview of life in, on and under snow for anyone interested in the cryosphere.







Hydrometeorology


Book Description

Hydrometeorology presents an introduction to relevant topics in the interdisciplinary fields of hydrology and meteorology. This book is one of the few books aiming to provide a balance between aspects of meteorological and hydrological processes. The transfer of energy and water between the land surface and lower atmosphere within the hydrological cycle is addressed followed by a description of the nature of precipitation, and how it is formed. Forecasting precipitation is reviewed on all scales, and the range of rainfall-runoff models and coastal surge models and forecasts (including tsunamis) which have been, and are being, used are discussed. The mechanisms of snow, ice (glacier, sea and tundra), evaporation and transpiration, how drought occurs and the representation of wind are described. How rainfall (including radar measurements) and river flow information is gathered and analysed (including, frequency analysis, Probable Maximum Precipitation and Flood) are presented. Satellite measurements of precipitation are discussed. Examples of major past floods and droughts are given. Past and future climate change, which is included, underpins the importance of hydro-meteorological processes. The structure of the general circulation of the atmosphere and how it influences weather and climate including the Hadley, Ferrel and Polar cells, the Trade winds and the El Nino, is outlined. Finally, the influence of urban areas on rainfall formation, dealing with urban drainage and air quality are described. Each chapter ends with one or two specific points as appendices, elements discussed in the chapter and a list of sample problems to aid understanding. Readership: This book is aimed at 3rd year undergraduate and postgraduate students on hydrology/hydrometeorology, environmental science and geography courses. Professionals in environmental protection agencies and consultancies will also find the book of great interest. It contains a balance of both the physics and mathematics which underpin such courses and activities.