Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings (FEMA 351)


Book Description

This report, FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide structural engineers with recommended criteria for evaluation of the probable performance of existing steel moment-frame buildings in future earthquakes and to provide a basis for updating and revision of evaluation and rehabilitation guidelines and standards. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended evaluation and upgrade criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific recommendations for design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.







Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications (FEMA 353)


Book Description

This report, FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications has been prepared by the SAC Joint Venture, under contract to the Federal Emergency Management Agency, to indicate those standards of workmanship for structural steel fabrication and erection deemed necessary to achieve reliably the design performance objectives contained in the set of companion publications prepared under this same contract: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, which provides recommended criteria, supplemental to FEMA-302, 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria; FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, which provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance; and FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded, Steel Moment-Frame Buildings, which provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. The recommended design criteria contained in these three companion reports are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications.







Structural Engineering Compendium I


Book Description

This compendium is made up of a selection of the best and most representative papers from a group of Elsevier's structural engineering journals. Selections were made by the journal's editorial teams. The papers appeared in the following journals during 2000: Journal of Constructional Steel Research P.J. Dowling, J.E. Harding, R. Bjorhovde Thin Walled Structures J. Loughlan, K.P. Chong Engineering Structures P.L. Gould Computers and Structures K.J. Bathe, B.H.V. Topping Construction and Building Materials M.C. Forde Journal of Wind Engineering & Industrial Areodynamics N.P. Jones Marine Structures P.A. Frieze, A. Mansour, T. Yao Each paper appears in the same format as it was published in the journal; citations should be made using the original journal publication details. It is intended that this compendium will be the first in a series of such collections. A compendium has also been published in the area of geotechnical engineering.




Ductility of Seismic-Resistant Steel Structures


Book Description

This book is a state-of-the-art report on the ductility of steel structures, containing a comprehensive review of the technical literature available, and presenting the results of the authors' own extensive research activities in this area. Analytical and numerical methods are described, and a wealth of practical information is provided. Ductility of Seismic-Resistant Steel Structures will be of great use to advanced students, researchers, designers and professionals in the field of civil, structural and earthquake engineering.