Technology Assessment for the Future Aeronautical Communications System


Book Description

To address emerging saturation in the VHF aeronautical bands allocated internationally for air traffic management communications, the International Civil Aviation Organization (ICAO) has requested development of a common global solution through its Aeronautical Communications Panel (ACP). In response, the Federal Aviation Administration (FAA) and Eurocontrol initiated a joint study, with the support of NASA and U.S. and European contractors, to provide major findings on alternatives and recommendations to the ICAO ACP Working Group C (WG-C). Under an FAA/Eurocontrol cooperative research and development agreement, ACP WG-C Action Plan 17 (AP-17), commonly referred to as the Future Communications Study (FCS), NASA Glenn Research Center is responsible for the investigation of potential communications technologies that support the long-term mobile communication operational concepts of the FCS. This report documents the results of the first phase of the technology assessment and recommendations referred to in the Technology Pre-Screening Task 3.1 of AP-17. The prescreening identifies potential technologies that are under development in the industry and provides an initial assessment against a harmonized set of evaluation criteria that address high level capabilities, projected maturity for the time frame for usage in aviation, and potential applicability to aviation. A wide variety of candidate technologies were evaluated from several communications service categories including: cellular telephony; IEEE-802.xx standards; public safety radio; satellite and over-the-horizon communications; custom narrowband VHF; custom wideband; and military communications. Budinger, James M. (Technical Monitor) Glenn Research Center NAS3-00174; WBS 22-184-10-05




Technology Assessment for the Future Aeronautical Communications System


Book Description

To address emerging saturation in the VHF aeronautical bands allocated internationally for air traffic management communications, the International Civil Aviation Organization (ICAO) has requested development of a common global solution through its Aeronautical Communications Panel (ACP). In response, the Federal Aviation Administration (FAA) and Eurocontrol initiated a joint study, with the support of NASA and U.S. and European contractors, to provide major findings on alternatives and recommendations to the ICAO ACP Working Group C (WG-C). Under an FAA/Eurocontrol cooperative research and development agreement, ACP WG-C Action Plan 17 (AP-17), commonly referred to as the Future Communications Study (FCS), NASA Glenn Research Center is responsible for the investigation of potential communications technologies that support the long-term mobile communication operational concepts of the FCS. This report documents the results of the first phase of the technology assessment and recommendations referred to in the Technology Pre-Screening Task 3.1 of AP-17. The prescreening identifies potential technologies that are under development in the industry and provides an initial assessment against a harmonized set of evaluation criteria that address high level capabilities, projected maturity for the time frame for usage in aviation, and potential applicability to aviation. A wide variety of candidate technologies were evaluated from several communications service categories including: cellular telephony; IEEE-802.xx standards; public safety radio; satellite and over-the-horizon communications; custom narrowband VHF; custom wideband; and military communications.




Additional Technologies and Investigations for Provision of Future Aeronautical Communications


Book Description

The following NASA Contractor Report documents the in-depth studies on select technologies that could support long-term aeronautical mobile communications operating concepts. This work was performed during the third and final phase of NASA s Technology Assessment for the Federal Aviation Administration (FAA)/EUROCONTROL Future Communications Study (FCS) under a multiyear NASA contract. It includes the associated findings of ITT Corporation and NASA Glenn Research Center to the FAA as of the end of May 2007. The activities documented in this report focus on three final technology candidates identified by the United States, and were completed before sufficient information about two additional technology candidates proposed by EUROCONTROL was made available. A separate report to be published by NASA/CR-2008-215144, entitled Final Report on Technology Investigations for Provision of Future Aeronautical Communications will include an assessment of all five final candidate technologies considered by the U.S. agencies (FAA and NASA) and EUROCONTROL. It will also provide an overview of the entire technology assessment process, including final recommendations. All three phases of this work were performed in compliance with the Terms of Reference for the Action Plan number 17 (AP-17) cooperative research agreement among EUROCONTROL, FAA, and NASA along with the general guidance of the FAA and EUROCONTROL available throughout this study.




AeroMACS


Book Description

This is a pioneering textbook on the comprehensive description of AeroMACS technology. It also presents the process of developing a new technology based on an established standard, in this case IEEE802.16 standards suite. The text introduces readers to the field of airport surface communications systems and provides them with comprehensive coverage of one the key components of the Next Generation Air Transportation System (NextGen); i.e., AeroMACS. It begins with a critical review of the legacy aeronautical communications system and a discussion of the impetus behind its replacement with network-centric digital technologies. It then describes wireless mobile channel characteristics in general, and focuses on the airport surface channel over the 5GHz band. This is followed by an extensive coverage of major features of IEEE 802.16-2009 Physical Layer (PHY)and Medium Access Control (MAC) Sublayer. The text then provides a comprehensive coverage of the AeroMACS standardization process, from technology selection to network deployment. AeroMACS is then explored as a short-range high-data-throughput broadband wireless communications system, with concentration on the AeroMACS PHY layer and MAC sublayer main features, followed by making a strong case in favor of the IEEE 802.16j Amendment as the foundational standard for AeroMACS networks. AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems covers topics such as Orthogonal Frequency Division Multiple Access (OFDMA), coded OFDMA, scalable OFDMA, Adaptive Modulation-Coding (AMC), Multiple-Input Multiple-Output (MIMO) systems, Error Control Coding (ECC) and Automatic Repeat Request (ARQ) techniques, Time Division Duplexing (TDD), Inter-Application Interference (IAI), and so on. It also looks at future trends and developments of AeroMACS networks as they are deployed across the world, focusing on concepts that may be applied to improve the future capacity. In addition, this text: Discusses the challenges posed by complexities of airport radio channels as well as those pertaining to broadband transmissions Examines physical layer (PHY) and Media Access Control (MAC) sublayer protocols and signal processing techniques of AeroMACS inherited from IEEE 802.16 standard and WiMAX networks Compares AeroMACS and how it relates to IEEE 802.16 Standard-Based WiMAX AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems will appeal to engineers and technical professionals involved in the research and development of AeroMACS, technical staffers of government agencies in aviation sectors, and graduate students interested in standard-based wireless networking analysis, design, and development.




Additional Technologies and Investigations for Provision of Future Aeronautical Communications


Book Description

The following NASA Contractor Report documents the indepth studies on select technologies that could support long-term aeronautical mobile communications operating concepts. This work was performed during the third and final phase of NASA's Technology Assessment for the FAA/EUROCONTROL Future Communications Study (FCS) under a multiyear NASA contract. It includes the associated findings of ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA) as of the end of May 2007. The activities documented in this report focus on three final technology candidates identified by the United States, and were completed before sufficient information about two additional technology candidates proposed by EUROCONTROL was made available. A separate report to be published by NASA (NASA/CR-2008-215144), entitled "Final Report on Technology Investigations for Provision of Future Aeronautical Communications" will include an assessment of all five final candidate technologies considered by the U.S. agencies (FAA and NASA) and EUROCONTROL. It will also provide an overview of the entire technology assessment process, including final recommendations. All three phases of this work were performed in compliance with the Terms of Reference for the Action Plan number 17 (AP-17) cooperative research agreement among EUROCONTROL, FAA, and NASA along with the general guidance of the FAA and EUROCONTROL available throughout this study.




Identification of Technologies for Provision of Future Aeronautical Communications


Book Description

This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes. Gilbert, Tricia and Dyer, Glen and Henriksen, Steve and Berger, Jason and Jin, Jenny and Boci, Tony Glenn Research Center NNC05CA856; WBS 931-02-07-03-02







L-DACS1


Book Description

Air transportation is an important factor for the economic growth of the European Union, however, the current system is already approaching its capacity limits. These limitations stem mainly from the current European air traffic control system. New concepts have been developed to overcome the limitations of the current system. However, these concepts require sophisticated data communication capabilities. It has thus been agreed that the aeronautical air-ground communications infrastructure has to evolve to provide the capacity and quality of service required to reform air transportation. EU and USA, representing the regions experiencing the most pressure to reform their existing air-ground communication infrastructure, initiated activities to jointly identify and assess candidates for future digital aeronautical communication systems. Two initiatives for the development of the L-band Digital Aeronautical Communication System (L-DACS) were started. This book presents the analysis, design, and evaluation of the user plane quality of service protocols of L-DACS 1.




Future Aeronautical Communications


Book Description

There are well-founded concerns that current air transportation systems will not be able to cope with their expected growth. Current processes, procedures and technologies in aeronautical communications do not provide the flexibility needed to meet the growing demands. Aeronautical communications is seen as a major bottleneck stressing capacity limits in air transportation. Ongoing research projects are developing the fundamental methods, concepts and technologies for future aeronautical communications that are required to enable higher capacities in air transportation. The aim of this book is to edit the ensemble of newest contributions and research results in the field of future aeronautical communications. The book gives the readers the opportunity to deepen and broaden their knowledge of this field. Today's and tomorrow's problems / methods in the field of aeronautical communications are treated: current trends are identified; IPv6 aeronautical network aspect are covered; challenges for the satellite component are illustrated; AeroMACS and LDACS as future data links are investigated and visions for aeronautical communications are formulated.




Global Aeronautical Distress and Safety Systems (GADSS)


Book Description

This book presents the principal structure, networks and applications of the Global Aeronautical Distress and Safety System (GADSS) for enhanced airborne Communication, Navigation and Surveillance (CNS). It shows how their implementation works to ensure better security in flight and on the airports surface; improved aircraft tracking and determination in real space and time; and enhanced distress alerting, safety; and Search and Rescue (SAR) system for missing, hijacked and landed aircraft at sea or on the ground. Main topics of this book are as follows: an overview of radio and satellite systems with retrospective to aeronautical safety; security and distress systems; space segment with all aspects regarding satellite orbits and infrastructures; transmission segment of radio and satellite systems; ground segment of radio and earth ground stations; airborne radio and satellite antenna systems and propagation; aeronautical VHF and HF Radio CNS systems and networks; Inmarsat, Iridium and Cospas-Sasrast aeronautical satellite CNS systems and networks; Aeronautical Global Satellite Augmentation System (GSAS) and networks; Digital Video Broadcasting - Return Channel via Satellite (DVB-RCS) standards and Aeronautical Stratospheric Platform Systems (SPS) and networks.