Technology Economics: LLDPE via Solution Process


Book Description

In the next few years, the US ethylene capacity is expected to grow by more than 30%, due to the rising exploitation of shale gas. Likewise, major petrochemical players have planned the construction of new polyethylene production plants. In this publication Intratec analyzes the technology and economics of a solution process similar to the NOVA Chemicals SCLAIRTECH technology. In the economic analysis Intratec presents not only the capital invesments and operating costs of a butene-based LLDPE plant in the US Gulf Coast, but also a regional comparison and sensitivity analysis on key raw material and key product prices. This study follows the same pattern as all Technology Economics studies developed by Intratec. About Technology Economics Technology Economics studies are advisory services ordered by leading chemical companies, which are disclosed to public if they allow so. All Technology Economics studies are based on the same rigorous methodology and well-defined structure, encompassing: Process flow diagrams and material balances Raw material and utility consumptions Major equipment sizing Inside and outside battery limits capital costs Detailed fixed and variable manufacturing expenses




Methanol: The Basic Chemical and Energy Feedstock of the Future


Book Description

Methanol - The Chemical and Energy Feedstock of the Future offers a visionary yet unbiased view of methanol technology. Based on the groundbreaking 1986 publication "Methanol" by Friedrich Asinger, this book includes contributions by more than 40 experts from industry and academia. The authors and editors provide a comprehensive exposition of methanol chemistry and technology which is useful for a wide variety of scientists working in chemistry and energy related industries as well as academic researchers and even decision-makers and organisations concerned with the future of chemical and energy feedstocks.







Handbook of Petrochemicals Production Processes


Book Description

This unique reference is the only one-stop source for details on licensed petrochemical processes for the major organic chemicals, a $200 billion annual market. With chapters prepared by some of the largest petrochemical and petroleum companies in the world, Handbook of Petrochemicals Production Processes provides in-depth process detail for commercial evalutation and covers plastics and polymers such as ethylene and polyethylene; propylene; ehtylbenzene, styrene, and polystyrenes; vinyl chloride and polyvinyl chloride; and many others. This handbook answers questions on yields, unit operations, chemical and physical values, economics, and much more.




Sustainable Design Through Process Integration


Book Description

Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement, Second Edition, is an important textbook that provides authoritative, comprehensive, and easy-to-follow coverage of the fundamental concepts and practical techniques on the use of process integration to maximize the efficiency and sustainability of industrial processes. The book is ideal for adoption in process design and sustainability courses. It is also a valuable guidebook to process, chemical, and environmental engineers who need to improve the design, operation, performance, and sustainability of industrial plants. The book covers pressing and high growth topics, including benchmarking process performance, identifying root causes of problems and opportunities for improvement, designing integrated solutions, enhancing profitability, conserving natural resources, and preventing pollution. Written by one of the world's foremost authorities on integrated process design and sustainability, the new edition contains new chapters and updated materials on various aspects of process integration and sustainable design. The new edition is also packed with numerous new examples and industrial applications. - Allows the reader to methodically develop rigorous targets that benchmark the performance of industrial processes then develop cost-effective implementations - Contains state-of-the-art process integration and improvement approaches and techniques including graphical, algebraic, and mathematical methods - Covers topics and applications that include profitability enhancement, mass and energy conservation, synthesis of innovative processes, retrofitting of existing systems, design and assessment of water, energy, and water-energy-nexus systems, and reconciliation of various sustainability objectives




Innovation Outlook


Book Description







Process Intensification and Integration for Sustainable Design


Book Description

Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.




Modern Petrochemical Technology


Book Description

Modern Petrochemical Technology A text that explores the essence of petrochemicals and petrochemical technology Modern Petrochemical Technology: Methods, Manufacturing and Applications is a comprehensive resource that provides an overview of the uses for common petrochemical building blocks, a review of the marketplaces, and offers a survey of the technology used to make the key petrochemical building blocks. The book contains both critical information the technologies used to produce petrochemicals, how the various petrochemicals are applied in industry, and provides illustrative examples and problems designed to reinforce the learning about the basic science, engineering, and use of petrochemicals. The book explores three seprate petrochemical building block—olefin complexes, aromatic complexes and synthesis gas complexes—and examines the “interconnected” nature of these building blocks. The authors also include information on the olefins productions using steam cracking, paraffin dehydrogenation, and methanol to olefins technologies and describes various methods, commercial processes to produce aromatics such as benzene, toluene and xylene, and much more. This important book: Offers a guide to the critical information on petrochemical producing technologies Includes material on various petrochemicals from the industrial point-of-view Explores the separation processes, membrane technology, absorption technology, liquid-liquid extraction, and more Contains material from a team of noted experts Provides a survey of examples of commercialization applications of petrochemicals Written for chemical engineers, chemists in industry, membrane scientists, and process engineers, Modern Petrochemical Technology provides an overview of markets and uses for common petrochemical building blocks as well as includes a survey of the technology used to make the key petrochemical building blocks.




Research Economics: Green Ethylene from Ethanol


Book Description

Rising oil prices and global concerns about sustainability and global warming have motivated research into ethylene manufacture from renewable sources. This report reviews the production of ethylene from ethanol dehydration in a process based on the patent published by BP Chemicals. It is presented a technical and economic evaluation of a unit located in the US Gulf Coast. In addition, a sensitivity analysis was performed in which the effects of variations in prices and technical parameters on the investment and the operating costs were studied. Green ethylene must be sold with an increased premium over fossil-based ethylene of about 50% in order to make the investment attractive. This study follows the same pattern as all Research Potential studies developed by Intratec. About Research Potential Research Potential studies are advisory services ordered by leading chemical companies, which are disclosed to public after an agreeded upon period of time. All Research Potential studies are based on the same rigorous methodology and well-defined structure, encompassing: Process flow diagrams and material balances Raw material and utility consumptions Major equipment sizing Inside and outside battery limits capital costs Detailed fixed and variable manufacturing expenses Sensitivity analysis