Space Robotics: Dynamics and Control


Book Description

Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.




Virtual Reality


Book Description

Despite widespread interest in virtual reality, research and development efforts in synthetic environments (SE)â€"the field encompassing virtual environments, teleoperation, and hybridsâ€"have remained fragmented. Virtual Reality is the first integrated treatment of the topic, presenting current knowledge along with thought-provoking vignettes about a future where SE is commonplace. This volume discusses all aspects of creating a system that will allow human operators to see, hear, smell, taste, move about, give commands, respond to conditions, and manipulate objects effectively in a real or virtual environment. The committee of computer scientists, engineers, and psychologists on the leading edge of SE development explores the potential applications of SE in the areas of manufacturing, medicine, education, training, scientific visualization, and teleoperation in hazardous environments. The committee also offers recommendations for development of improved SE technology, needed studies of human behavior and evaluation of SE systems, and government policy and infrastructure.




Telemanipulator Technology


Book Description







Intelligent Robotic Systems for Space Exploration


Book Description

Over the last twenty years, automation and robotics have played an increasingly important role in a variety of application domains including manufacturing, hazardous environments, defense, and service industries. Space is a unique environment where power, communications, atmospheric, gravitational, and sensing conditions impose harsh constraints on the ability of both man and machines to function productively. In this environment, intelligent automation and robotics are essential complements to the capabilities of humans. In the development of the United States Space Program, robotic manipulation systems have increased in importance as the complexity of space missions has grown. Future missions will require the construction, maintenance, and repair of large structures, such as the space station. This volume presents the effords of several groups that are working on robotic solutions to this problem. Much of the work in this book is related to assembly in space, and especially in-orbit assembly of large truss structures. Many of these so-called truss structures will be assembled in orbit. It is expected that robot manipulators will be used exclusively, or at least provide partial assistance to humans. Intelligent Robotic Systems for Space Exploration provides detailed algorithms and analysis for assembly of truss structure in space. It reports on actual implementations to date done at NASA's Langley Research Center. The Johnson Space Center, and the Jet Propulsion Laboratory. Other implementations and research done at Rensselaer are also reported. Analysis of robot control problems that are unique to a zero-gravity environment are presented.




Space Robotics


Book Description

This book provides readers with basic concepts and design theories for space robots and presents essential methodologies for implementing space robot engineering by introducing several concrete projects as illustrative examples. Readers will gain a comprehensive understanding of professional theories in the field of space robots, and will find an initial introduction to the engineering processes involved in developing space robots. Rapid advances in technologies such as the Internet of Things, Cloud Computing, and Artificial Intelligence have also produced profound changes in space robots. With the continuous expansion of human exploration of the universe, it is imperative for space robots to be capable of sharing knowledge, working collaboratively, and becoming more and more intelligent so as to optimize the utilization of space resources. For on-orbit robots that perform service tasks such as spacecraft assembly and maintenance, as well as exploration robots that carry out research tasks on planetary surfaces, the rational integration into a network system can greatly improve their capabilities in connection with executing outer space tasks, such as information gathering and utilization, independent decision-making and planning, risk avoidance, and reliability, while also significantly reducing resource consumption for the system as a whole.




Modern Robotics


Book Description

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.