Temperature- and Time-Dependent Dielectric Measurements and Modelling on Curing of Polymer Composites


Book Description

In this book a test set for dielectric measurements at 2.45 GHz during curing of polymer composites is developed. Fast reconstruction is solved using a neural network algorithm. Modeling of the curing process at 2.45 GHz using both dielectric constant and dielectric loss factor results in more accurate model compared to low frequency modelling that only uses the loss factor. Effect of various hardeners and different amount of filler is investigated.




Temperature- and Time-Dependent Dielectric Measurements and Modelling on Curing of Polymer Composites


Book Description

In this book a test set for dielectric measurements at 2.45 GHz during curing of polymer composites is developed. Fast reconstruction is solved using a neural network algorithm. Modeling of the curing process at 2.45 GHz using both dielectric constant and dielectric loss factor results in more accurate model compared to low frequency modelling that only uses the loss factor. Effect of various hardeners and different amount of filler is investigated. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




MultPhysics Modelling towards the Stabilization of PAN Fibers with Microwaves Based on Experimental Data


Book Description

High energy demand is one reason for high costs of carbon fibers. One option to decrease them is to use microwave heating instead of conventional heating. In this work, steps towards a microwave assisted process during the stabilization phase are presented. In-situ dielectric measurements are performed and a reaction kinetics model is setup in connection to the dielectric loss. This allows to calculate a stabilization degree and fiber temperatures leading to a basic process understanding.




Energy-efficient, scalable and modular industrial microwave applicator for high temperature alkaline hydrolysis of PET


Book Description

Microwave-assisted alkaline hydrolysis of PET can be 20 times faster and at lower temperatures. This work presents a novel industrial microwave applicator at 2.45 GHz with homogeneous distribution to support this reaction, which allows an efficient and continuous operation. In addition, an innovative dielectric and calorimetric measurements setup is presented. Furthermore, the modelling of the reaction kinetics based on the measured dielectric parameters is presented.




Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources


Book Description

In this work, an innovative real-time microwave control approach is proposed, to improve the temperature homogeneity under microwave heating. Multiple adaptive or intelligent control structures have been developed, including the model predictive control, neural network control and reinforcement learning control methods. Experimental results prove that these advanced control methods can effectively reduce the final temperature derivations and improve the temperature homogeneity.




Design and Experimental Investigation of a Second Harmonic 20 kW Class 28 GHz Gyrotron for Evaluation of New Emitter Technologies


Book Description

Gyrotrons are high-power mm-wave tubes. Here, the design, construction and experimental investigation of a 20 kW, 28 GHz gyrotron (2nd harmonic) are reported. This tube was designed to evaluate new emitters for future highly efficient and reliable fusion gyrotrons and for material processing applications. Following experimental results have been achieved in CW operation: 22.5 kW output power at 23.4 kV electron beam voltage and 2.23 A beam current with the world record efficiency of 43 %.










Automated Mode Recovery and Electronic Stability Control for Wendelstein 7-X Gyrotrons


Book Description

Magnetic confinement fusion relies on plasma heating and plasma control using gyrotron oscillators providing at megawatt power levels. The operational reliability decreases when operating at the performance limits due to increasing parasitic mode activity. This work demonstrates for the first time the automated, fast recovery of nominal gyrotron operation during a pulse by exploiting the hysteretic gyrotron behaviour after a mode switch being in use at the Wendelstein 7-X ECRH facility.




Feasibility and Operational Limits for a 236 GHz Hollow-Cavity Gyrotron for DEMO


Book Description

The DEMOnstration fusion power plant (DEMO) will be the first fusion reactor, which is intended to generate net electrical power. For successful operation of DEMO, high-power gyrotrons with operating frequencies up to 240 GHz are required for plasma heating and stabilization. In this work, a systematic feasibility study and tolerance analysis are performed for the conventional-type hollow-cavity DEMO gyrotrons. The various approaches are also suggested to identify its operational limits.