Advances in Spatial and Temporal Databases


Book Description

This book constitutes the refereed proceedings of the 15th International Symposium on Spatial and Temporal Databases, SSTD 2017, held in Arlington, VA, USA, in August 2017.The 19 full papers presented together with 8 demo papers and 5 vision papers were carefully reviewed and selected from 90 submissions. The papers are organized around the current research on concepts, tools, and techniques related to spatial and temporal databases.




Advanced Analytics and Learning on Temporal Data


Book Description

This book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Würzburg, Germany, in September 2019. The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data.




Outlier Detection for Temporal Data


Book Description

Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers. Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies




Innovations in Smart Cities Applications Volume 5


Book Description

This book sets the innovative research contributions, works, and solutions for almost all the intelligent and smart applications in the smart cities. The smart city concept is a relevant topic for industrials, governments, and citizens. Due to this, the smart city, considered as a multi-domain context, attracts tremendously academics researchers and practitioners who provide efforts in theoretical proofs, approaches, architectures, and in applied researches. The importance of smart cities comes essentially from the significant growth of populations in the near future which conducts to a real need of smart applications that can support this evolution in the future cities. The main scope of this book covers new and original ideas for the next generations of cities using the new technologies. The book involves the application of the data science and AI, IoT technologies and architectures, smart earth and water management, smart education and E-learning systems, smart modeling systems, smart mobility, and renewable energy. It also reports recent research works on big data technologies, image processing and recognition systems, and smart security and privacy.




Handbook of Mobility Data Mining, Volume 1


Book Description

Handbook of Mobility Data Mining, Volume One: Data Preprocessing and Visualization introduces the fundamental technologies of mobile big data mining (MDM), advanced AI methods, and upper-level applications, helping readers comprehensively understand MDM with a bottom-up approach. The book explains how to preprocess mobile big data, visualize urban mobility, simulate and predict human travel behavior, and assess urban mobility characteristics and their matching performance as conditions and constraints in transport, emergency management, and sustainability development systems. The book contains crucial information for researchers, engineers, operators, administrators, and policymakers seeking greater understanding of current technologies' infra-knowledge structure and limitations. Further, the book introduces how to design MDM platforms that adapt to the evolving mobility environment, new types of transportation, and users based on an integrated solution that utilizes sensing and communication capabilities to tackle significant challenges faced by the MDM field. This volume focuses on how to efficiently pre-process mobile big data to extract and utilize critical feature information of high-dimensional city people flow. The book first provides a conceptual theory and framework, then discusses data sources, trajectory map-matching, noise filtering, trajectory data segmentation, data quality assessment, and more, concluding with a chapter on privacy protection in mobile big data mining. - Introduces the characteristics of different mobility data sources, like GPS, CDR, and sensor-based mobility data - Summarizes existing visualization technologies of the current transportation system into a multi-view frame, covering the perspective of the three leading actors - Provides recommendations for practical open-source tools and libraries for system visualization - Stems from the editor's strong network of global transport authorities and transport companies, providing a solid knowledge structure and data foundation as well as geographical and stakeholder coverage




Outlier Analysis


Book Description

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.




Artificial Intelligence and Cognitive Computing


Book Description

Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that.




2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)


Book Description

It is our pleasure to invite you to participate in the 2nd IEEE International Workshop on Arabic and derived Script Analysis and Recognition (ASAR 2018), which will be hosted by the Alan Turing Institute, London, in collaboration with the LORIA laboratory (University Lorraine, France) and REGIM Lab (University of Sfax, Tunisia), and will be held in London (United Kingdom) on March 12 14, 2018 The ASAR workshop provides an excellent opportunity for researchers and practitioners at all levels of experience to meet colleagues and to share new ideas and knowledge about Arabic and derived script document analysis and recognition methods The workshop enjoys strong participation from researchers in both industry and academia




Urban Computing


Book Description

An authoritative treatment of urban computing, offering an overview of the field, fundamental techniques, advanced models, and novel applications. Urban computing brings powerful computational techniques to bear on such urban challenges as pollution, energy consumption, and traffic congestion. Using today's large-scale computing infrastructure and data gathered from sensing technologies, urban computing combines computer science with urban planning, transportation, environmental science, sociology, and other areas of urban studies, tackling specific problems with concrete methodologies in a data-centric computing framework. This authoritative treatment of urban computing offers an overview of the field, fundamental techniques, advanced models, and novel applications. Each chapter acts as a tutorial that introduces readers to an important aspect of urban computing, with references to relevant research. The book outlines key concepts, sources of data, and typical applications; describes four paradigms of urban sensing in sensor-centric and human-centric categories; introduces data management for spatial and spatio-temporal data, from basic indexing and retrieval algorithms to cloud computing platforms; and covers beginning and advanced topics in mining knowledge from urban big data, beginning with fundamental data mining algorithms and progressing to advanced machine learning techniques. Urban Computing provides students, researchers, and application developers with an essential handbook to an evolving interdisciplinary field.




Machine Learning and Data Mining in Aerospace Technology


Book Description

This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering. This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.