Testing of the Plastic Deformation of Metals


Book Description

Discover a novel approach to the subject, providing detailed information about established and innovative mechanical testing procedures.




The Plastic Deformation of Metals


Book Description







Testing of the Plastic Deformation of Metals


Book Description

Discover a novel, self-contained approach to an important technical area, providing both theoretical background and practical details. Coverage includes mechanics and physical metallurgy, as well as study of both established and novel procedures such as indentation plastometry. Numerical simulation (FEM modelling) is explored thoroughly, and issues of scale are discussed in depth. Discusses procedures designed to explore plasticity under various conditions, and relates sample responses to deformation mechanisms, including microstructural effects. Features references throughout to industrial processing and component usage conditions, to a wide range of metallic alloys, and to effects of residual stresses, anisotropy and inhomogeneity within samples. A perfect tool for materials scientists, engineers and researchers involved in mechanical testing (of metals), and those involved in the development of novel materials and components.







Mechanical Behavior of Materials


Book Description

This is a textbook on the mechanical behavior of materials for mechanical and materials engineering. It emphasizes quantitative problem solving. This new edition includes treatment of the effects of texture on properties and microstructure in Chapter 7, a new chapter (12) on discontinuous and inhomogeneous deformation, and treatment of foams in Chapter 21.




Tensile Testing, 2nd Edition


Book Description




Plastic Deformation and Strain Hardening


Book Description

This publication is based upon lectures given during a well-received course on physical metallurgy and originally intended for students specializing in fields related to metallic materials. But, as the author points out, metallic materials are the most widely investigated group of materials and their study therefore gives a good basis for understanding how other materials can be made to reveal interrelationships between their structures and properties; especially with regard to those properties associated with strain. Similar types of rule can then be applied to other materials, in spite of their apparent differences.




Plastic Flow of Metals


Book Description




Mechanical Properties and Working of Metals and Alloys


Book Description

This book is intended to serve as core text or handy reference on two key areas of metallic materials: (i) mechanical behavior and properties evaluated by mechanical testing; and (ii) different types of metal working or forming operations to produce useful shapes. The book consists of 16 chapters which are divided into two parts. The first part contains nine chapters which describe tension (including elastic stress – strain relation, relevant theory of plasticity, and strengthening methods), compression, hardness, bending, torsion – pure shear, impact loading, creep and stress rupture, fatigue, and fracture. The second part is composed of seven chapters and covers fundamentals of mechanical working, forging, rolling, extrusion, drawing of flat strip, round bar, and tube, deep drawing, and high-energy rate forming. The book comprises an exhaustive description of mechanical properties evaluated by testing of metals and metal working in sufficient depth and with reasonably wide coverage. The book is written in an easy-to-understand manner and includes many solved problems. More than 150 numerical problems and many multiple choice questions as exercise along with their answers have also been provided. The mathematical analyses are well elaborated without skipping any intermediate steps. Slab method of analysis or free-body equilibrium approach is used for the analytical treatment of mechanical working processes. For hot working processes, different frictional conditions (sliding, sticking and mixed sticking–sliding) have been considered to estimate the deformation loads. In addition to the slab method of analysis, this book also contains slip-line field theory, its application to the static system, and the steady state motion, Further, this book includes upper-bound theorem, and upper-bound solutions for indentation, compression, extrusion and strip drawing. The book can be used to teach graduate and undergraduate courses offered to students of mechanical, aerospace, production, manufacturing and metallurgical engineering disciplines. The book can also be used for metallurgists and practicing engineers in industry and development courses in the metallurgy and metallic manufacturing industries.