The Standard Model


Book Description

An authoritative, hands-on introduction to the foundational theory and experimental tests of particle physics The Standard Model is an elegant and extremely successful theory that formulates the laws of fundamental interactions among elementary particles. This incisive textbook introduces students to the physics of the Standard Model while providing an essential overview of modern particle physics, with a unique emphasis on symmetry principles as the starting point for constructing models. The Standard Model equips students with an in-depth understanding of this impressively predictive theory and an appreciation of its beauty, and prepares them to interpret future experimental results. Describes symmetry principles of growing complexity, including Abelian symmetries and their application in QED, the theory of electromagnetic interactions, non-Abelian symmetries and their application in QCD, the theory of strong interactions, and spontaneously broken symmetries and their application in the theory of weak interactions Derives the Lagrangian that implements these symmetry principles and extracts the phenomenology that follows from it, such as elementary particles and accidental symmetries Explains how the Standard Model has been experimentally tested, emphasizing electroweak precision measurements, flavor-changing neutral current processes, neutrino oscillations, and cosmology Demonstrates how to extend the model to address experimental and observational puzzles, such as neutrino masses, dark matter, and the baryon asymmetry of the universe Features a wealth of problems drawing from the latest research Ideal for a one-semester graduate course and an invaluable resource for practitioners Online solutions manual (available only to instructors)




An Introduction to Nuclear Physics


Book Description

A clear and concise introduction to nuclear physics suitable for a core undergraduate physics course.




The Standard Model and Beyond


Book Description

This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.




An Introduction to Particle Physics and the Standard Model


Book Description

An Introduction to the Standard Model of Particle Physics familiarizes readers with what is considered tested and accepted and in so doing, gives them a grounding in particle physics in general. Whenever possible, Dr. Mann takes an historical approach showing how the model is linked to the physics that most of us have learned in less challenging areas. Dr. Mann reviews special relativity and classical mechanics, symmetries, conservation laws, and particle classification; then working from the tested paradigm of the model itself, he: Describes the Standard Model in terms of its electromagnetic, strong, and weak components Explores the experimental tools and methods of particle physics Introduces Feynman diagrams, wave equations, and gauge invariance, building up to the theory of Quantum Electrodynamics Describes the theories of the Strong and Electroweak interactions Uncovers frontier areas and explores what might lie beyond our current concepts of the subatomic world Those who work through the material will develop a solid command of the basics of particle physics. The book does require a knowledge of special relativity, quantum mechanics, and electromagnetism, but most importantly it requires a hunger to understand at the most fundamental level: why things exist and how it is that anything happens. This book will prepare students and others for further study, but most importantly it will prepare them to open their minds to the mysteries that lie ahead. Ultimately, the Large Hadron Collider may prove the model correct, helping so many realize their greatest dreams ... or it might poke holes in the model, leaving us to wonder an even more exciting possibility: that the answers lie in possibilities so unique that we have not even dreamt of them.




Precision Tests Of The Standard Electroweak Model


Book Description

High precision measurements of weak neutral current and charged current processes and of the properties of the Z and W bosons have established the standard electroweak model as correct down to a distance scale of 10-16 cm, and are a sensitive probe of possible underlying physics. In this book, all aspects of the program are considered in detail, including the structure of the standard model, radiative corrections, high precision experiments, and their implications. The major classes of experiments are surveyed, covering the experiments themselves, the data analysis, results, and prospects.This volume is a detailed reference for theoretical and experimental researchers, as well as an introductory text for advanced students.




The Standard Model


Book Description

This 2006 book uses the standard model as a vehicle for introducing quantum field theory.




Quantum Field Theory and the Standard Model


Book Description

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.




Testing The Standard Model (Tasi 1990) - Proceedings Of The 1990 Theoretical Advanced Study Institute In Elementary Particle Physics


Book Description

The Theoretical Advanced Study Institute (TASI) has become the major summer school for advanced students in elementary particle theory in the United States, offering courses in particle theory, phenomenology, and mathematical physics. The theme of the 1990 school, 'Testing the Standard Model', was chosen because of the many new high precision results that had recently become available from the TEVATRON, SLC, and LEP. The goal was to explore the theoretical background and implications of experiments at these and future facilities, both in and beyond the standard model.




Introduction To Quantum Field Theory And The Standard Model


Book Description

Based on the lectures given at TU Munich for third-year physics students, this book provides the basic concepts of relativistic quantum field theory, perturbation theory, Feynman graphs, Abelian and non-Abelian gauge theories, with application to QED, QCD, and the electroweak Standard Model. It also introduces quantum field theory and particle physics for beginning graduate students with an orientation towards particle physics and its theoretical foundations. Phenomenology of W and Z bosons, as well as Higgs bosons, is part of the electroweak chapter in addition to recent experimental results, precision tests and current status of the Standard Model.




The Standard Theory of Particle Physics


Book Description

The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.