Fuzzy Information Retrieval


Book Description

Information retrieval used to mean looking through thousands of strings of texts to find words or symbols that matched a user's query. Today, there are many models that help index and search more effectively so retrieval takes a lot less time. Information retrieval (IR) is often seen as a subfield of computer science and shares some modeling, applications, storage applications and techniques, as do other disciplines like artificial intelligence, database management, and parallel computing. This book introduces the topic of IR and how it differs from other computer science disciplines. A discussion of the history of modern IR is briefly presented, and the notation of IR as used in this book is defined. The complex notation of relevance is discussed. Some applications of IR is noted as well since IR has many practical uses today. Using information retrieval with fuzzy logic to search for software terms can help find software components and ultimately help increase the reuse of software. This is just one practical application of IR that is covered in this book. Some of the classical models of IR is presented as a contrast to extending the Boolean model. This includes a brief mention of the source of weights for the various models. In a typical retrieval environment, answers are either yes or no, i.e., on or off. On the other hand, fuzzy logic can bring in a "degree of" match, vs. a crisp, i.e., strict match. This, too, is looked at and explored in much detail, showing how it can be applied to information retrieval. Fuzzy logic is often times considered a soft computing application and this book explores how IR with fuzzy logic and its membership functions as weights can help indexing, querying, and matching. Since fuzzy set theory and logic is explored in IR systems, the explanation of where the fuzz is ensues. The concept of relevance feedback, including pseudorelevance feedback is explored for the various models of IR. For the extended Boolean model, the use of genetic algorithms for relevance feedback is delved into. The concept of query expansion is explored using rough set theory. Various term relationships is modeled and presented, and the model extended for fuzzy retrieval. An example using the UMLS terms is also presented. The model is also extended for term relationships beyond synonyms. Finally, this book looks at clustering, both crisp and fuzzy, to see how that can improve retrieval performance. An example is presented to illustrate the concepts.




Image Retrieval and Analysis Using Text and Fuzzy Shape Features: Emerging Research and Opportunities


Book Description

Multimedia information retrieval focuses on the tools of processing and searching that are applicable to the content-based management of new multimedia documents. It has recently expanded to encompass newly devised techniques that will further its performance and growing importance. Image Retrieval and Analysis Using Text and Fuzzy Shape Features: Emerging Research and Opportunities is a critical scholarly resource that explores methods and strategies related to multimedia information retrieval systems. Featuring coverage on a broad range of topics including content-based image retrieval, text-based image retrieval, fuzzy object shape features, encoding, and indexing, this book is geared towards library science specialists, information technology specialists, and researchers seeking current information on the integration of new information retrieval technologies.




Fuzzy Logic and the Semantic Web


Book Description

These are exciting times in the fields of Fuzzy Logic and the Semantic Web, and this book will add to the excitement, as it is the first volume to focus on the growing connections between these two fields. This book is expected to be a valuable aid to anyone considering the application of Fuzzy Logic to the Semantic Web, because it contains a number of detailed accounts of these combined fields, written by leading authors in several countries. The Fuzzy Logic field has been maturing for forty years. These years have witnessed a tremendous growth in the number and variety of applications, with a real-world impact across a wide variety of domains with humanlike behavior and reasoning. And we believe that in the coming years, the Semantic Web will be major field of applications of Fuzzy Logic. This book, the first in the new series Capturing Intelligence, shows the positive role Fuzzy Logic, and more generally Soft Computing, can play in the development of the Semantic Web, filling a gap and facing a new challenge. It covers concepts, tools, techniques and applications exhibiting the usefulness, and the necessity, for using Fuzzy Logic in the Semantic Web. It finally opens the road to new systems with a high Web IQ. Most of today's Web content is suitable for human consumption. The Semantic Web is presented as an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation. For example, within the Semantic Web, computers will understand the meaning of semantic data on a web page by following links to specified ontologies. But while the Semantic Web vision and research attracts attention, as long as it will be used two-valued-based logical methods no progress will be expected in handling ill-structured, uncertain or imprecise information encountered in real world knowledge. Fuzzy Logic and associated concepts and techniques (more generally, Soft Computing), has certainly a positive role to play in the development of the Semantic Web. Fuzzy Logic will not supposed to be the basis for the Semantic Web but its related concepts and techniques will certainly reinforce the systems classically developed within W3C. In fact, Fuzzy Logic cannot be ignored in order to bridge the gap between human-understandable soft logic and machine-readable hard logic. None of the usual logical requirements can be guaranteed: there is no centrally defined format for data, no guarantee of truth for assertions made, no guarantee of consistency. To support these arguments, this book shows how components of the Semantic Web (like XML, RDF, Description Logics, Conceptual Graphs, Ontologies) can be covered, with in each case a Fuzzy Logic focus. - First volume to focus on the growing connections between Fuzzy Logic and the Semantic Web - Keynote chapter by Lotfi Zadeh - The Semantic Web is presently expected to be a major field of applications of Fuzzy Logic - It fills a gap and faces a new challenge in the development of the Semantic Web - It opens the road to new systems with a high Web IQ - Contributed chapters by Fuzzy Logic leading experts




Proceedings of the Third International Conference on Intelligent Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011


Book Description

The Third International Conference on Intelligent Human Computer Interaction 2011 (IHCI 2011) was held at Charles University, Prague, Czech Republic from August 29 - August 31, 2011. This conference was third in the series, following IHCI 2009 and IHCI 2010 held in January at IIIT Allahabad, India. Human computer interaction is a fast growing research area and an attractive subject of interest for both academia and industry. There are many interesting and challenging topics that need to be researched and discussed. This book aims to provide excellent opportunities for the dissemination of interesting new research and discussion about presented topics. It can be useful for researchers working on various aspects of human computer interaction. Topics covered in this book include user interface and interaction, theoretical background and applications of HCI and also data mining and knowledge discovery as a support of HCI applications.




Fuzzy Logic


Book Description

Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems.





Book Description




International Conference on Innovative Computing and Communications


Book Description

This book includes high-quality research papers presented at the Second International Conference on Innovative Computing and Communication (ICICC 2019), which is held at the VŠB - Technical University of Ostrava, Czech Republic, on 21–22 March 2019. Introducing the innovative works of scientists, professors, research scholars, students, and industrial experts in the fields of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.




Ontology-Based Information Retrieval for Healthcare Systems


Book Description

With the advancements of semantic web, ontology has become the crucial mechanism for representing concepts in various domains. For research and dispersal of customized healthcare services, a major challenge is to efficiently retrieve and analyze individual patient data from a large volume of heterogeneous data over a long time span. This requirement demands effective ontology-based information retrieval approaches for clinical information systems so that the pertinent information can be mined from large amount of distributed data. This unique and groundbreaking book highlights the key advances in ontology-based information retrieval techniques being applied in the healthcare domain and covers the following areas: Semantic data integration in e-health care systems Keyword-based medical information retrieval Ontology-based query retrieval support for e-health implementation Ontologies as a database management system technology for medical information retrieval Information integration using contextual knowledge and ontology merging Collaborative ontology-based information indexing and retrieval in health informatics An ontology-based text mining framework for vulnerability assessment in health and social care An ontology-based multi-agent system for matchmaking patient healthcare monitoring A multi-agent system for querying heterogeneous data sources with ontologies for reducing cost of customized healthcare systems A methodology for ontology based multi agent systems development Ontology based systems for clinical systems: validity, ethics and regulation




Introduction to Information Retrieval


Book Description

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.




Theoretical Advances and Applications of Fuzzy Logic and Soft Computing


Book Description

This book comprises a selection of papers on theoretical advances and applications of fuzzy logic and soft computing from the IFSA 2007 World Congress, held in Cancun, Mexico, June 2007. These papers constitute an important contribution to the theory and applications of fuzzy logic and soft computing methodologies.