Text Book of Linear Programming-II


Book Description

Linear Programming has progressed a great deal during last two decades. It is becoming increasingly sophisticated with the availability of computer facilities and infusion of new chapters. The text of this book has been presented in easy and simple language. Throughout the text, the two streams theory and technique run side by side. Each technique run side by side. Each technique is preceded by the relevant theory followed by suitable examples. A large number of important problems mostly drawn from university examination papers has been included.




Linear Programming and Its Applications


Book Description

Linear Programming and Its Applications is intended for a first course in linear programming, preferably in the sophomore or junior year of the typical undergraduate curriculum. The emphasis throughout the book is on linear programming skills via the algorithmic solution of small-scale problems, both in the general sense and in the specific applications where these problems naturally occur. The book arose from lecture notes prepared during the years 1985-1987 while I was a graduate assistant in the Department of Mathematics at The Pennsylvania State University. I used a preliminary draft in a Methods of Management Science class in the spring semester of 1988 at Lock Haven University. Having been extensively tried and tested in the classroom at various stages of its development, the book reflects many modifications either suggested directly by students or deemed appropriate from responses by students in the classroom setting. My primary aim in writing the book was to address common errors and difficulties as clearly and effectively as I could.




Understanding and Using Linear Programming


Book Description

The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".




Linear Programming


Book Description

This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.




Linear Programming


Book Description

To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming.... Style is informal. ...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews This is a textbook intended for advanced undergraduate or graduate students. It contains both theory and computational practice. —Zentralblatt Math




Optimization Using Linear Programming


Book Description

Designed for engineers, mathematicians, computer scientists, financial analysts, and anyone interested in using numerical linear algebra, matrix theory, and game theory concepts to maximize efficiency in solving applied problems. The book emphasizes the solution of various types of linear programming problems by using different types of software, but includes the necessary definitions and theorems to master theoretical aspects of the topics presented. Features: Emphasizes the solution of various types of linear programming problems by using different kinds of software, e.g., MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, and LINDO Provides definitions, theorems, and procedures for solving problems and all cases related to various linear programming topics Includes numerous application examples and exercises, e.g., transportation, assignment, and maximization Presents numerous topics that can be used to solve problems involving systems of linear equations, matrices, vectors, game theory, simplex method, and more.




An Introduction to Linear Programming and Game Theory


Book Description

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.




Linear Programming: Foundations and Extensions


Book Description

This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.£/LIST£.




Linear Programming


Book Description

"This comprehensive treatment of the fundamental ideas and principles of linear programming covers basic theory, selected applications, network flow problems, and advanced techniques. Using specific examples to illuminate practical and theoretical aspects of the subject, the author clearly reveals the structures of fully detailed proofs. The presentation is geared toward modern efficient implementations of the simplex method and appropriate data structures for network flow problems. Completely self-contained, it develops even elementary facts on linear equations and matrices from the beginning."--Back cover.




Theory of Linear and Integer Programming


Book Description

Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index