Mechanical Vibration


Book Description

Mechanical Vibration: Analysis, Uncertainties, and Control, Fourth Edition addresses the principles and application of vibration theory. Equations for modeling vibrating systems are explained, and MATLAB® is referenced as an analysis tool. The Fourth Edition adds more coverage of damping, new case studies, and development of the control aspects in vibration analysis. A MATLAB appendix has also been added to help students with computational analysis. This work includes example problems and explanatory figures, biographies of renowned contributors, and access to a website providing supplementary resources.




Mechanical Vibrations in SI Units


Book Description

For courses in vibration engineering. Building Knowledge: Concepts of Vibration in Engineering Retaining the style of previous editions, this Sixth Edition of Mechanical Vibrations effectively presents theory, computational aspects, and applications of vibration, introducing undergraduate engineering students to the subject of vibration engineering in as simple a manner as possible. Emphasising computer techniques of analysis, Mechanical Vibrations thoroughly explains the fundamentals of vibration analysis, building on the understanding achieved by students in previous undergraduate mechanics courses. Related concepts are discussed, and real-life applications, examples, problems, and illustrations related to vibration analysis enhance comprehension of all concepts and material. In the Sixth Edition, several additions and revisions have been made--including new examples, problems, and illustrations--with the goal of making coverage of concepts both more comprehensive and easier to follow.




Mechanical Vibration


Book Description

Model, analyze, and solve vibration problems, using modern computer tools. Featuring clear explanations, worked examples, applications, and modern computer tools, William Palm's Mechanical Vibration provides a firm foundation in vibratory systems. You'll learn how to apply knowledge of mathematics and science to model and analyze systems ranging from a single degree of freedom to complex systems with two and more degrees of freedom. Separate MATLAB sections at the end of most chapters show how to use the most recent features of this standard engineering tool, in the context of solving vibration problems. The text introduces Simulink where solutions may be difficult to program in MATLAB, such as modeling Coulomb friction effects and simulating systems that contain non-linearities. Ample problems throughout the text provide opportunities to practice identifying, formulating, and solving vibration problems. KEY FEATURES Strong pedagogical approach, including chapter objectives and summaries Extensive worked examples illustrating applications Numerous realistic homework problems Up-to-date MATLAB coverage The first vibration textbook to cover Simulink Self-contained introduction to MATLAB in Appendix A Special section dealing with active vibration control in sports equipment Special sections devoted to obtaining parameter values from experimental data




Mechanical Vibrations


Book Description

This classic text combines the scholarly insights of its distinguished author with the practical, problem-solving orientation of an experienced industrial engineer. Abundant examples and figures, plus 233 problems and answers. 1956 edition.




Mechanical Vibrations, 2nd Edition


Book Description

Written specifically for the students of Mechanical Engineering, "Mechanical Vibrations" is a succinctly written textbook. Without being verbose, the textbook delves into all concepts related to the subject and deals with them in a laconic manner. Concepts such as Freedom Systems, Vibration Measurement and Transient Vibrations have been treated well for the student to get profounder knowledge in the subject.




Introduction to Mechanical Vibrations


Book Description

An in-depth introduction to the foundations of vibrations for students of mechanical engineering For students pursuing their education in Mechanical Engineering, An Introduction to Mechanical Vibrations is a definitive resource. The text extensively covers foundational knowledge in the field and uses it to lead up to and include: finite elements, the inerter, Discrete Fourier Transforms, flow-induced vibrations, and self-excited oscillations in rail vehicles. The text aims to accomplish two things in a single, introductory, semester-length, course in vibrations. The primary goal is to present the basics of vibrations in a manner that promotes understanding and interest while building a foundation of knowledge in the field. The secondary goal is to give students a good understanding of two topics that are ubiquitous in today's engineering workplace - finite element analysis (FEA) and Discrete Fourier Transforms (the DFT- most often seen in the form of the Fast Fourier Transform or FFT). FEA and FFT software tools are readily available to both students and practicing engineers and they need to be used with understanding and a degree of caution. While these two subjects fit nicely into vibrations, this book presents them in a way that emphasizes understanding of the underlying principles so that students are aware of both the power and the limitations of the methods. In addition to covering all the topics that make up an introductory knowledge of vibrations, the book includes: ● End of chapter exercises to help students review key topics and definitions ● Access to sample data files, software, and animations via a dedicated website




TEXTBOOK OF MECHANICAL VIBRATIONS


Book Description

This comprehensive and accessible book, now in its second edition, covers both mathematical and physical aspects of the theory of mechanical vibrations. This edition includes a new chapter on the analysis of nonlinear vibrations. The text examines the models and tools used in studying mechanical vibrations and the techniques employed for the development of solutions from a practical perspective to explain linear and nonlinear vibrations. To enable practical understanding of the subject, numerous solved and unsolved problems involving a wide range of practical situations are incorporated in each chapter. This text is designed for use by the undergraduate and postgraduate students of mechanical engineering.




Vibration of Mechanical Systems


Book Description

This is a textbook for a first course in mechanical vibrations. There are many books in this area that try to include everything, thus they have become exhaustive compendiums, overwhelming for the undergraduate. In this book, all the basic concepts in mechanical vibrations are clearly identified and presented in a concise and simple manner with illustrative and practical examples. Vibration concepts include a review of selected topics in mechanics; a description of single-degree-of-freedom (SDOF) systems in terms of equivalent mass, equivalent stiffness, and equivalent damping; a unified treatment of various forced response problems (base excitation and rotating balance); an introduction to systems thinking, highlighting the fact that SDOF analysis is a building block for multi-degree-of-freedom (MDOF) and continuous system analyses via modal analysis; and a simple introduction to finite element analysis to connect continuous system and MDOF analyses. There are more than sixty exercise problems, and a complete solutions manual. The use of MATLAB® software is emphasized.




Mechanical and Structural Vibrations


Book Description

This book provides a new viewpoint for the study of vibrations exhibited by mechanical and structural systems. Tight integration of mathematical software makes it possible to address real world complexity in a manner that is readily accessible to the reader. It offers new approaches for discrete system modeling and for analysis of continuous systems. Substantial attention is given to several topics of practical importance, including FFT's experimental modal analysis, substructuring concepts, and response of heavily damped and gyroscopic systems.




Mechanical Vibrations in Spacecraft Design


Book Description

All typical and special modal and response analysis methods, applied within the frame of the design of spacecraft structures, are described in this book. It therefore addresses graduate students and engineers in the aerospace field.