Textbook of Seismic Design


Book Description

This book focuses on the seismic design of Structures, Piping Systems and Components (SSC). It explains the basic mechanisms of earthquakes, generation of design basis ground motion, and fundamentals of structural dynamics; further, it delves into geotechnical aspects related to the earthquake design, analysis of multi degree-of-freedom systems, and seismic design of RC structures and steel structures. The book discusses the design of components and piping systems located at the ground level as well as at different floor levels of the structure. It also covers anchorage design of component and piping system, and provides an introduction to retrofitting, seismic response control including seismic base isolation, and testing of SSCs. The book is written in an easy-to-understand way, with review questions, case studies and detailed examples on each topic. This educational approach makes the book useful in both classrooms and professional training courses for students, researchers, and professionals alike.




Seismic Design of Building Structures


Book Description

- Solid review of seismic design exam topics- More than 100 practice problems- Includes step-by-step solutions Copyright © Libri GmbH. All rights reserved.




Seismic Design and Assessment of Bridges


Book Description

The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.




Basic Earthquake Engineering


Book Description

This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.




The Seismic Design Handbook


Book Description

This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.




Design of Seismic Isolated Structures


Book Description

Complete, practical coverage of the evaluation, analysis, and design and code requirements of seismic isolation systems. Based on the concept of reducing seismic demand rather than increasing the earthquake resistance capacity of structures, seismic isolation is a surprisingly simple approach to earthquake protection. However, proper application of this technology within complex seismic design code requirements is both complicated and difficult. Design of Seismic Isolated Structures provides complete, up-to-date coverage of seismic isolation, complete with a systematic development of concepts in theory and practical application supplemented by numerical examples. This book helps design professionals navigate and understand the ideas and procedures involved in the analysis, design, and development of specifications for seismic isolated structures. It also provides a framework for satisfying code requirements while retaining the favorable cost-effective and damage control aspects of this new technology. An indispensable resource for practicing and aspiring engineers and architects, Design of Seismic Isolated Structures includes: * Isolation system components. * Complete coverage of code provisions for seismic isolation. * Mechanical characteristics and modeling of isolators. * Buckling and stability of elastomeric isolators. * Examples of seismic isolation designs. * Specifications for the design, manufacture, and testing of isolation devices.




Elements of Earthquake Engineering and Structural Dynamics


Book Description

Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena such as earthquakes involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by earthquakes. However, structural engineers must rely on the expertise of other specialists to realize these projects. Thus, this book not only focuses on structural analysis and design, but also discusses other disciplines, such as geology, seismology, and soil dynamics, providing basic knowledge in these areas so that structural engineers can better interact with different specialists when working on earthquake engineering projects."




Earthquake Engineering


Book Description

Learn to design code-compliant, earthquake-resistant structures with this practical guide Earthquake Engineering demonstrates how to design structural members and joints for seismic resistance. The text guides readers through dozens of structural designs, documenting how to perform each step, make the necessary calculations, and adhere to relevant design codes. Most other texts on seismic design focus on theory and the construction of idealized structures; this text is a radical departure, presenting actual tested design methodologies that protect structures from the devastation of earthquakes. All the design methods presented by the author comply with the current U.S. building codes. References to these codes are provided throughout the text, helping readers understand how they are integrated into an overall structural design. Everything readers need to create sound designs, from analysis to design implementation, is provided, including: * Dozens of worked problems throughout the text * Complete reference chapters dedicated to matrices, differential equations, and numerical analysis * Latest results of ongoing seismic research, including how these studies are likely to influence future design projects * The latest 2006 IBC, highlighting significant variations from the 2000 and 2003 editions of the code * Detailed coverage of seismic design for steel moment-resisting frame structures (SMRF), as well as braced-frame steel, concrete, masonry, and wood-framed structures This text, with its many worked problems, is ideal for upper-level undergraduates and graduate students. Now that the seismic engineering provisions of the IBC Code apply to the entire United States, this text should also guide practicing engineers not yet exposed to seismic design in designing code-compliant, earthquake-resistant structures.




Geotechnical Earthquake Engineering


Book Description

"This fully-updated new edition provides an introduction to geotechnical earthquake engineering to first-time readers (typically first-year graduate students) with a level of detail that will be useful to more advanced students, as well as researchers and practitioners. It covers the topic of geotechnical earthquake engineering beginning with an introduction to seismology and earthquake ground motions. It also includes hazard analysis and performance-based earthquake engineering design and dynamic soil properties. These topics are followed by site response and its analysis and soil-structure interaction"--




Seismic Design of Reinforced Concrete and Masonry Buildings


Book Description

Emphasizes actual structural design, not analysis, of multistory buildings for seismic resistance. Strong emphasis is placed on specific detailing requirements for construction. Fundamental design principles are presented to create buildings that respond to a wide range of potential seismic forces, which are illustrated by numerous detailed examples. The discussion includes the design of reinforced concrete ductile frames, structural walls, dual systems, reinforced masonry structures, buildings with restricted ductility and foundation walls. In addition to the examples, full design calculations are given for three prototype structures.