Handbook of Texture Analysis


Book Description

The major goals of texture research in computer vision are to understand, model, and process texture and, ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis. This volume presents important branches of texture analysis methods which find a proper application in AI-based medical image analysis. This book: Discusses first-order, second-order statistical methods, local binary pattern (LBP) methods, and filter bank-based methods Covers spatial frequency-based methods, Fourier analysis, Markov random fields, Gabor filters, and Hough transformation Describes advanced textural methods based on DL as well as BD and advanced applications of texture to medial image segmentation Is aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering This is an essential reference for those looking to advance their understanding in this applied and emergent field.







Advances in Distributed Computing and Machine Learning


Book Description

This book presents recent advances in the field of scalable distributed computing including state-of-the-art research in the field of Cloud Computing, the Internet of Things (IoT), and Blockchain in distributed environments along with applications and findings in broad areas including Data Analytics, AI, and Machine Learning to address complex real-world problems. It features selected high-quality research papers from the 2nd International Conference on Advances in Distributed Computing and Machine Learning (ICADCML 2021), organized by the Department of Computer Science and Information Technology, Institute of Technical Education and Research(ITER), Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India.







Handbook of Texture Analysis


Book Description

The major goals of texture research in computer vision are to understand, model, and process texture, and ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis. This book examines four major application domains related to texture analysis and their relationship to AI-based industrial applications: texture classification, texture segmentation, shape from texture, and texture synthesis. This volume: Discusses texture-based segmentation for extracting image shape features, modeling and segmentation of noisy and textured images, spatially constrained color-texture model for image segmentation, and texture segmentation using Gabor filters Examines textural features for image classification, a statistical approach for classification, texture classification from random features, and applications of texture classifications Describes shape from texture, including general principles, 3D shapes, and equations for recovering shape from texture Surveys texture modeling, including extraction based on Hough transformation and cycle detection, image quilting, gray level run lengths, and use of Markov random fields Aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering, this is an essential reference for those looking to advance their understanding in this applied and emergent field.




Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning


Book Description

By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.




Image Processing and Capsule Networks


Book Description

This book emphasizes the emerging building block of image processing domain, which is known as capsule networks for performing deep image recognition and processing for next-generation imaging science. Recent years have witnessed the continuous development of technologies and methodologies related to image processing, analysis and 3D modeling which have been implemented in the field of computer and image vision. The significant development of these technologies has led to an efficient solution called capsule networks [CapsNet] to solve the intricate challenges in recognizing complex image poses, visual tasks, and object deformation. Moreover, the breakneck growth of computation complexities and computing efficiency has initiated the significant developments of the effective and sophisticated capsule network algorithms and artificial intelligence [AI] tools into existence. The main contribution of this book is to explain and summarize the significant state-of-the-art research advances in the areas of capsule network [CapsNet] algorithms and architectures with real-time implications in the areas of image detection, remote sensing, biomedical image analysis, computer communications, machine vision, Internet of things, and data analytics techniques.