Proceedings


Book Description




Image Analysis and Recognition


Book Description

ICIAR 2004, the International Conference on Image Analysis and Recognition, was the ?rst ICIAR conference, and was held in Porto, Portugal. ICIAR will be organized annually, and will alternate between Europe and North America. ICIAR 2005 will take place in Toronto, Ontario, Canada. The idea of o?ering these conferences came as a result of discussion between researchers in Portugal and Canada to encourage collaboration and exchange, mainly between these two countries, but also with the open participation of other countries, addressing recent advances in theory, methodology and applications. The response to the call for papers for ICIAR 2004 was very positive. From 316 full papers submitted, 210 were accepted (97 oral presentations, and 113 - sters). The review process was carried out by the Program Committee members and other reviewers; all are experts in various image analysis and recognition areas. Each paper was reviewed by at least two reviewing parties. The high q- lity of the papers in these proceedings is attributed ?rst to the authors, and second to the quality of the reviews provided by the experts. We would like to thank the authors for responding to our call, and we wholeheartedly thank the reviewers for their excellent work in such a short amount of time. We are espe- ally indebted to the Program Committee for their e?orts that allowed us to set up this publication. We were very pleased to be able to include in the conference, Prof. Murat KuntfromtheSwissFederalInstituteofTechnology,andProf. Mario ́ Figueiredo, oftheInstitutoSuperiorT ́ ecnico,inPortugal.




Markov Random Fields in Image Segmentation


Book Description

Markov Random Fields in Image Segmentation provides an introduction to the fundamentals of Markovian modeling in image segmentation as well as a brief overview of recent advances in the field. Segmentation is formulated within an image labeling framework, where the problem is reduced to assigning labels to pixels. In a probabilistic approach, label dependencies are modeled by Markov random fields (MRF) and an optimal labeling is determined by Bayesian estimation, in particular maximum a posteriori (MAP) estimation. The main advantage of MRF models is that prior information can be imposed locally through clique potentials. MRF models usually yield a non-convex energy function. The minimization of this function is crucial in order to find the most likely segmentation according to the MRF model. Classical optimization algorithms including simulated annealing and deterministic relaxation are treated along with more recent graph cut-based algorithms. The primary goal of this monograph is to demonstrate the basic steps to construct an easily applicable MRF segmentation model and further develop its multi-scale and hierarchical implementations as well as their combination in a multilayer model. Representative examples from remote sensing and biological imaging are analyzed in full detail to illustrate the applicability of these MRF models. Furthermore, a sample implementation of the most important segmentation algorithms is available as supplementary software. Markov Random Fields in Image Segmentation is an invaluable resource for every student, engineer, or researcher dealing with Markovian modeling for image segmentation.




3D Structure from Images - SMILE 2000


Book Description

This volume contains the ?nal version of the papers originally presented at the second SMILE workshop 3D Structure from Multiple Images of Large-scale Environments, which was held on 1-2 July 2000 in conjunction with the Sixth European Conference in Computer Vision at Trinity College Dublin. The subject of the workshop was the visual acquisition of models of the 3D world from images and their application to virtual and augmented reality. Over the last few years tremendous progress has been made in this area. On the one hand important new insightshavebeenobtainedresultinginmore exibilityandnewrepresentations.Onthe other hand a number of techniques have come to maturity, yielding robust algorithms delivering good results on real image data. Moreover supporting technologies – such as digital cameras, computers, disk storage, and visualization devices – have made things possible that were infeasible just a few years ago. Opening the workshop was Paul Debevec s invited presentation on image-based modeling,rendering,andlighting.Hepresentedanumberoftechniquesforusingdigital images of real scenes to create 3D models, virtual camera moves, and realistic computer animations.Theremainderoftheworkshopwasdividedintothreesessions:Computation and Algorithms, Visual Scene Representations, and Extended Environments. After each session there was a panel discussion that included all speakers. These panel discussions were organized by Bill Triggs, Marc Pollefeys, and Tomas Pajdla respectively, who introduced the topics and moderated the discussion. Asubstantialpartoftheseproceedingsarethetranscriptsofthediscussionsfollowing each paper and the full panel sessions. These discussions were of very high quality and were an integral part of the workshop.




Intelligent Computing Theories and Application


Book Description

This two-volume set LNCS 9771 and LNCS 9772 constitutes - in conjunction with the volume LNAI 9773 - the refereed proceedings of the 12th International Conference on Intelligent Computing, ICIC 2016, held in Lanzhou, China, in August 2016. The 221 full papers and 15 short papers of the three proceedings volumes were carefully reviewed and selected from 639 submissions. The papers are organized in topical sections such as signal processing and image processing; information security, knowledge discovery, and data mining; systems biology and intelligent computing in computational biology; intelligent computing in scheduling; information security; advances in swarm intelligence: algorithms and applications; machine learning and data analysis for medical and engineering applications; evolutionary computation and learning; independent component analysis; compressed sensing, sparse coding; social computing; neural networks; nature inspired computing and optimization; genetic algorithms; signal processing; pattern recognition; biometrics recognition; image processing; information security; virtual reality and human-computer interaction; healthcare informatics theory and methods; artificial bee colony algorithms; differential evolution; memetic algorithms; swarm intelligence and optimization; soft computing; protein structure and function prediction; advances in swarm intelligence: algorithms and applications; optimization, neural network, and signal processing; biomedical informatics and image processing; machine learning; knowledge discovery and natural language processing; nature inspired computing and optimization; intelligent control and automation; intelligent data analysis and prediction; computer vision; knowledge representation and expert system; bioinformatics.




Markov Random Field Modeling in Image Analysis


Book Description

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.




Multi-Level Bayesian Models for Environment Perception


Book Description

This book deals with selected problems of machine perception, using various 2D and 3D imaging sensors. It proposes several new original methods, and also provides a detailed state-of-the-art overview of existing techniques for automated, multi-level interpretation of the observed static or dynamic environment. To ensure a sound theoretical basis of the new models, the surveys and algorithmic developments are performed in well-established Bayesian frameworks. Low level scene understanding functions are formulated as various image segmentation problems, where the advantages of probabilistic inference techniques such as Markov Random Fields (MRF) or Mixed Markov Models are considered. For the object level scene analysis, the book mainly relies on the literature of Marked Point Process (MPP) approaches, which consider strong geometric and prior interaction constraints in object population modeling. In particular, key developments are introduced in the spatial hierarchical decomposition of the observed scenarios, and in the temporal extension of complex MRF and MPP models. Apart from utilizing conventional optical sensors, case studies are provided on passive radar (ISAR) and Lidar-based Bayesian environment perception tasks. It is shown, via several experiments, that the proposed contributions embedded into a strict mathematical toolkit can significantly improve the results in real world 2D/3D test images and videos, for applications in video surveillance, smart city monitoring, autonomous driving, remote sensing, and optical industrial inspection.




Advances in Visual Computing


Book Description

This book constitutes the refereed proceedings of the 14th International Symposium on Visual Computing, ISVC 2019, held in Lake Tahoe, NV, USA in October 2019. The 100 papers presented in this double volume were carefully reviewed and selected from 163 submissions. The papers are organized into the following topical sections: Deep Learning I; Computer Graphics I; Segmentation/Recognition; Video Analysis and Event Recognition; Visualization; ST: Computational Vision, AI and Mathematical methods for Biomedical and Biological Image Analysis; Biometrics; Virtual Reality I; Applications I; ST: Vision for Remote Sensing and Infrastructure Inspection; Computer Graphics II; Applications II; Deep Learning II; Virtual Reality II; Object Recognition/Detection/Categorization; and Poster.




Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book


Book Description

Published on the occasion of the XXIst Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS) in Beiijng, China in 2008, Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book is a compilation of 34 contributions from 62 researchers active within the ISPRS. The book covers




Advanced Color Image Processing and Analysis


Book Description

This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.