The Action Principle and Partial Differential Equations


Book Description

This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.




The Action Principle and Partial Differential Equations. (AM-146), Volume 146


Book Description

This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.




Partial Differential Equations in Action


Book Description

This work is an updated version of a book evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background for numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In the second part, chapters 6 to 10 concentrate on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems, while Chapter 11 deals with vector-valued conservation laws, extending the theory developed in Chapter 4. The main differences with respect to the previous editions are: a new section on reaction diffusion models for population dynamics in a heterogeneous environment; several new exercises in almost all chapters; a general restyling and a reordering of the last chapters. The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering.




Partial Differential Equations in Action


Book Description

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.




Partial Differential Equations in Action


Book Description

This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.




Partial Differential Equations in Action


Book Description

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.




Principles of Partial Differential Equations


Book Description

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.




The Geometrical Study of Differential Equations


Book Description

This volume contains papers based on some of the talks given at the NSF-CBMS conference on ``The Geometrical Study of Differential Equations'' held at Howard University (Washington, DC). The collected papers present important recent developments in this area, including the treatment of nontransversal group actions in the theory of group invariant solutions of PDEs, a method for obtaining discrete symmetries of differential equations, the establishment of a group-invariant version of the variational complex based on a general moving frame construction, the introduction of a new variational complex for the calculus of difference equations and an original structural investigation of Lie-Backlund transformations. The book opens with a modern and illuminating overview of Lie's line-sphere correspondence and concludes with several interesting open problems arising from symmetry analysis of PDEs. It offers a rich source of inspiration for new or established researchers in the field. This book can serve nicely as a companion volume to a forthcoming book written by the principle speaker at the conference, Professor Niky Kamran, to be published in the AMS series, CBMS Regional Conference Series in Mathematics.




Elliptic Partial Differential Equations


Book Description

This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.