Analytical Heat Diffusion Theory


Book Description

Analytical Heat Diffusion Theory is a revised edition of an earlier book by Academician Luikov, which was widely used throughout the Soviet Union and the surrounding socialist countries. This book is divided into 15 chapters that treat heat conduction problems by the classical methods and emphasize the advantages of the transform method, particularly in obtaining short time solutions of many transient problems. This book starts with a discussion on the physical fundamentals, generalized variables, and solution of boundary value problems of heat transfer. Considerable chapters are devoted to the basic classical heat transfer problems and problems in which the body surface temperature is a specified function of time. Other chapters explore the heat transfer problems under different heat sources, including continuous and pulse-type. The discussion then shifts to the problem of freezing wet ground, two-dimensional temperature field, and heat conduction with variable transfer coefficients. The final chapters deal with the fundamentals of the integral transforms and their application to heat conduction problems. These chapters also look into the application of the theory of analytic functions to the heat conduction theory of mathematical physics. This book is an invaluable source for advanced undergraduate or graduate in analytical heat transfer.







Building Heat Transfer


Book Description

A third or more of the energy consumption of industrialized countries is expended on creating acceptable thermal and lighting conditions in buildings. As a result, building heat transfer is keenly important to the design of buildings, and the resulting analytical theory forms the basis of most design procedures. Analytical Theory of Building Heat Transfer is the first comprehensive reference of its kind, a one-volume compilation of current findings on heat transfer relating to the thermal behavior of buildings, forming a logical basis for current design procedures.







Theory of Heat


Book Description

This classic sets forth the fundamentals of thermodynamics and kinetic theory simply enough to be understood by beginners, yet with enough subtlety to appeal to more advanced readers, too.







Heat Transfer and Fluid Flow in Biological Processes


Book Description

Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques




Mathematical Modeling of Random and Deterministic Phenomena


Book Description

This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.




Heat Transfer Principles and Applications


Book Description

Heat Transfer Principles and Applications is a welcome change from more encyclopedic volumes exploring heat transfer. This shorter text fully explains the fundamentals of heat transfer, including heat conduction, convection, radiation and heat exchangers. The fundamentals are then applied to a variety of engineering examples, including topics of special and current interest like solar collectors, cooling of electronic equipment, and energy conservation in buildings. The text covers both analytical and numerical solutions to heat transfer problems and makes considerable use of Excel and MATLAB® in the solutions. Each chapter has several example problems and a large, but not overwhelming, number of end-of-chapter problems.




Heat transfer


Book Description