The Art of Measuring in the Thermal Sciences


Book Description

The Art of Measuring in the Thermal Sciences provides an original state-of-the-art guide to scholars who are conducting thermal experiments in both academia and industry. Applications include energy generation, transport, manufacturing, mining, processes, HVAC&R, etc. This book presents original insights into advanced measurement techniques and systems, explores the fundamentals, and focuses on the analysis and design of thermal systems. Discusses the advanced measurement techniques now used in thermal systems Links measurement techniques to concepts in thermal science and engineering Draws upon the original work of current researchers and experts in thermal-fluid measurement Includes coverage of new technologies, such as micro-level heat transfer measurements Covers the main types of instrumentation and software used in thermal-fluid measurements This book offers engineers, researchers, and graduate students an overview of the best practices for conducting sound measurements in the thermal sciences.




The Art of Measuring in the Thermal Sciences


Book Description

The Art of Measuring in the Thermal Sciences provides an original state-of-the-art guide to scholars who are conducting thermal experiments in both academia and industry. Applications include energy generation, transport, manufacturing, mining, processes, HVAC&R, etc. This book presents original insights into advanced measurement techniques and systems, explores the fundamentals, and focuses on the analysis and design of thermal systems. Discusses the advanced measurement techniques now used in thermal systems Links measurement techniques to concepts in thermal science and engineering Draws upon the original work of current researchers and experts in thermal-fluid measurement Includes coverage of new technologies, such as micro-level heat transfer measurements Covers the main types of instrumentation and software used in thermal-fluid measurements This book offers engineers, researchers, and graduate students an overview of the best practices for conducting sound measurements in the thermal sciences.




Selected papers of the "1st International Conference on Nanofluids (ICNf)"


Book Description

This Special Issue of Energies has emerged as a result of the 1st International Conference on Nanofluids (https://icnf2019.com/), which was organized under the auspices of Nanouptake COST Action (Overcoming Barriers to Nanofluids Market Uptake, http://www.nanouptake.eu/) in Castelló (Spain), in June 2019. The foci of ICNf2019 were the production and the characterisation of nanofluids for different areas of applications in the energy fields, namely heat transfer, storage of thermal energy, boiling, and solar systems, as well as industrial applications and health and safety issues. The first conference edition on this topic gathered more than 200 participants from 45 different countries. More than 125 contributions were presented in the nine sections of the congress. Some selected authors were invited to send extended versions of their work to the Energies ICNf2019 Special Issue. After a careful review process, nine articles from six different countries were selected for compilation in this Special Issue: a total of seven full research papers and two reviews. These papers cover a broad range of fundamental and applied research aspects on nanofluid science and development, and reflect the current investigations, knowledge, and challenges encountered in the use of nanofluids for energy applications.




Handbook of Measurement in Science and Engineering, Volume 1


Book Description

A multidisciplinary reference of engineering measurement tools, techniques, and applications Volume 1 "When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science." Lord Kelvin Measurement falls at the heart of any engineering discipline and job function. Whether engineers are attempting to state requirements quantitatively and demonstrate compliance; to track progress and predict results; or to analyze costs and benefits, they must use the right tools and techniques to produce meaningful, useful data. The Handbook of Measurement in Science and Engineering is the most comprehensive, up-to-date reference set on engineering measurements beyond anything on the market today. Encyclopedic in scope, Volume 1 spans several disciplines Civil and Environmental Engineering, Mechanical and Biomedical Engineering, and Industrial Engineering and covers: New Measurement Techniques in Structural Health Monitoring Traffic Congestion Management Measurements in Environmental Engineering Dimensions, Surfaces, and Their Measurement Luminescent Method for Pressure Measurement Vibration Measurement Temperature Measurement Force Measurement Heat Transfer Measurements for Non-Boiling Two-Phase Flow Solar Energy Measurements Human Movement Measurements Physiological Flow Measurements GIS and Computer Mapping Seismic Testing of Highway Bridges Hydrology Measurements Mobile Source Emissions Testing Mass Properties Measurement Resistive Strain Measurement Devices Acoustics Measurements Pressure and Velocity Measurements Heat Flux Measurement Wind Energy Measurements Flow Measurement Statistical Quality Control Industrial Energy Efficiency Industrial Waste Auditing Vital for engineers, scientists, and technical managers in industry and government, Handbook of Measurement in Science and Engineering will also prove ideal for members of major engineering associations and academics and researchers at universities and laboratories.




Measurements, Mechanisms, and Models of Heat Transport


Book Description

Measurements, Mechanisms, and Models of Heat Transport offers an interdisciplinary approach to the dynamic response of matter to energy input. Using a combination of fundamental principles of physics, recent developments in measuring time-dependent heat conduction, and analytical mathematics, this timely reference summarizes the relative advantages of currently used methods, and remediates flaws in modern models and their historical precursors. Geophysicists, physical chemists, and engineers will find the book to be a valuable resource for its discussions of radiative transfer models and the kinetic theory of gas, amended to account for atomic collisions being inelastic. This book is a prelude to a companion volume on the thermal state, formation, and evolution of planets. Covering both microscopic and mesoscopic phenomena of heat transport, Measurements, Mechanisms, and Models of Heat Transport offers both the fundamental knowledge and up-to-date measurements and models to encourage further improvem - Combines state-of-the-art measurements with core principles to lead to a better understanding of heat conduction and of radiative diffusion, and how these processes are linked - Focuses on macroscopic models of heat transport and the underlying physical principles, providing the tools needed to solve many different problems in heat transport - Connects thermodynamics with behavior of light in revising the kinetic theory of gas, which underlies all models of heat transport, and uses such links to re-derive formulae for blackbody emissions - Explores all states of matter, with an emphasis on crystalline and amorphous solids













Optical Coatings and Thermal Noise in Precision Measurement


Book Description

Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers examine our current theoretical and experimental understanding. Beginning with the theory of thermal noise in mirrors and substrates, subsequent chapters discuss the technology of depositing coatings and state-of-the-art dielectric coating techniques used in precision measurement. Applications and remedies for noise reduction are also covered. Individual chapters are dedicated to specific fields where coating thermal noise is a particular concern, including the areas of quantum optics/optomechanics, gravitational wave detection, precision timing, high-precision laser stabilisation via optical cavities and cavity quantum electrodynamics. While providing full mathematical detail, the text avoids field-specific jargon, making it a valuable resource for readers with varied backgrounds in modern optics.