Book Description
An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P n$ in terms of the vector bundles $\Omega {\mathbb{P n j(j)$ for $0\le j\le n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $\mathbb{P ({\rm w )$ (the weighted projective space of weights $\rm w=({\rm w 0,\dots,{\rm w n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${\rm w 0=\cdots={\rm w n=1$, i.e. $\mathbb{P ({\rm w )= \mathbb{P n$), obtained by endowing $\mathbb{P ({\rm w )$ with a natural graded structure sheaf. The resulting graded ringed space $\overline{\mathbb{P ({\rm w )$ is an example of graded scheme (in chapter 1 graded schemes are defined and studied in some greater generality than is needed in the rest of the work). Then in chapter 2 we prove This weighted version of Beilinson's theorem is then applied in chapter 3 to prove a structure theorem for good birational weighted canonical projections of surfaces of general type (i.e., for morphisms, which are birational onto the image, from a minimal surface of general type $S$ into a $3$-dimensional $\mathbb{P ({\rm w )$, induced by $4$ sections $\sigma i\in H0(S,\mathcal{O S({\rm w iK S))$). This is a generalization of a theorem by Catanese and Schreyer (who treated the case of projections into $\mathbb{P 3$), and is mainly interesting for irregular surfaces, since in the regular case a similar but simpler result (due to Catanese) was already known. The theorem essentially states that giving a good birational weighted canonical projection is equivalent to giving a symmetric morphism of (graded) vector bundles on $\overline{\mathbb{P ({\rm w )$, satisfying some suitable conditions. Such a morphism is then explicitly determined in chapter 4 for a family of surfaces with numerical invariant