The Best Approximation and Optimization in Locally Convex Spaces


Book Description

This book presents several new results on the best simultaneous approximation in locally convex spaces. The concept of nuclear cone is systematically used to establish some interesting relations with Pareto optimization and the duality for vectorial optimization programs with multifunctions.




The Theory of Best Approximation and Functional Analysis


Book Description

Results and problems in the modern theory of best approximation, in which the methods of functional analysis are applied in a consequent manner. This modern theory constitutes both a unified foundation for the classical theory of best approximation and a powerful tool for obtaining new results.







Duality for Nonconvex Approximation and Optimization


Book Description

The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields.




Convexity and Optimization in Banach Spaces


Book Description

An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.




Fundamentals of Approximation Theory


Book Description

The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.




Advances in Multiple Objective and Goal Programming


Book Description

Within the field of multiple criteria decision making, this volume covers the latest advances in multiple objective and goal programming as presented at the 2nd International Conference on Multi-Objective Programming and Goal Programming, Torremolinos, Spain, May 16 - 18, 1996. The book is an undispensable source of the latest research results, presented by the leading experts of the field.







General Equilibrium, Growth, and Trade II


Book Description

General Equilibrium, Growth, and Trade, Volume II: The Legacy of Lionel McKenzie presents the impact of Lionel McKenzie's contributions on modern economics. This book discusses McKenzie's researches that are relevant in applied economic fields, including general equilibrium, optimal growth, and international trade. Organized into three parts encompassing 24 chapters, this volume begins with an overview of the existence of competitive equilibrium in an economy with a finite number of agents and commodities. This text then presents two analyses that are basically responses to criticism of the development of real indeterminacy. Other chapters consider McKenzie's assumption of irreducibility, which plays a significant role in showing how compensated equilibria will be uncompensated equilibria because agents have cheaper net trade vectors in their feasible sets. This book discusses as well some properties of competitive equilibria for dynamic exchange economies with an infinite horizon and incomplete financial markets. This book is a valuable resource for economists and economic theorists.




Functional Analysis in Asymmetric Normed Spaces


Book Description

An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when restricted to non-negative entries in the first argument. The asymmetric dual of X, meaning the set of all real-valued upper semi-continuous linear functionals on X, is merely a convex cone in the vector space of all linear functionals on X. In spite of these differences, many results from classical functional analysis have their counterparts in the asymmetric case, by taking care of the interplay between the asymmetric norm p and its conjugate. Among the positive results one can mention: Hahn–Banach type theorems and separation results for convex sets, Krein–Milman type theorems, analogs of the fundamental principles – open mapping, closed graph and uniform boundedness theorems – an analog of the Schauder’s theorem on the compactness of the conjugate mapping. Applications are given to best approximation problems and, as relevant examples, one considers normed lattices equipped with asymmetric norms and spaces of semi-Lipschitz functions on quasi-metric spaces. Since the basic topological tools come from quasi-metric spaces and quasi-uniform spaces, the first chapter of the book contains a detailed presentation of some basic results from the theory of these spaces. The focus is on results which are most used in functional analysis – completeness, compactness and Baire category – which drastically differ from those in metric or uniform spaces. The book is fairly self-contained, the prerequisites being the acquaintance with the basic results in topology and functional analysis, so it may be used for an introduction to the subject. Since new results, in the focus of current research, are also included, researchers in the area can use it as a reference text.