The Art of Changing the Brain


Book Description

Neuroscience tells us that the products of the mind--thought, emotions, artistic creation--are the result of the interactions of the biological brain with our senses and the physical world: in short, that thinking and learning are the products of a biological process.This realization, that learning actually alters the brain by changing the number and strength of synapses, offers a powerful foundation for rethinking teaching practice and one's philosophy of teaching.James Zull invites teachers in higher education or any other setting to accompany him in his exploration of what scientists can tell us about the brain and to discover how this knowledge can influence the practice of teaching. He describes the brain in clear non-technical language and an engaging conversational tone, highlighting its functions and parts and how they interact, and always relating them to the real world of the classroom and his own evolution as a teacher. "The Art of Changing the Brain" is grounded in the practicalities and challenges of creating effective opportunities for deep and lasting learning, and of dealing with students as unique learners.




The Biology Book


Book Description

Learn about the most important discoveries and theories of this science in The Biology Book. Part of the fascinating Big Ideas series, this book tackles tricky topics and themes in a simple and easy to follow format. Learn about Biology in this overview guide to the subject, great for novices looking to find out more and experts wishing to refresh their knowledge alike! The Biology Book brings a fresh and vibrant take on the topic through eye-catching graphics and diagrams to immerse yourself in. This captivating book will broaden your understanding of Biology, with: - More than 95 ideas and events key to the development of biology and the life sciences - Packed with facts, charts, timelines and graphs to help explain core concepts - A visual approach to big subjects with striking illustrations and graphics throughout - Easy to follow text makes topics accessible for people at any level of understanding The Biology Book is a captivating introduction to understanding the living world and explaining how its organisms work and interact - whether microbes, mushrooms, or mammals. Here you'll discover key areas of the life sciences, including ecology, zoology, and biotechnology, through exciting text and bold graphics. Your Biology Questions, Simply Explained This book will outline big biological ideas, like the mysteries of DNA and genetic inheritance; and how we learned to develop vaccines that control diseases. If you thought it was difficult to learn about the living world, The Biology Book presents key information in a clear layout. Here you'll learn about cloning, neuroscience, human evolution, and gene editing, and be introduced to the scientists who shaped these subjects, such as Carl Linnaeus, Jean-Baptiste Lamarck, Charles Darwin, and Gregor Mendel. The Big Ideas Series With millions of copies sold worldwide, The Biology Book is part of the award-winning Big Ideas series from DK. The series uses striking graphics along with engaging writing, making big topics easy to understand.




Teaching Biology in Schools


Book Description

An indispensable tool for biology teacher educators, researchers, graduate students, and practising teachers, this book presents up-to-date research, addresses common misconceptions, and discusses the pedagogical content knowledge necessary for effective teaching of key topics in biology. Chapters cover core subjects such as molecular biology, genetics, ecology, and biotechnology, and tackle broader issues that cut across topics, such as learning environments, worldviews, and the nature of scientific inquiry and explanation. Written by leading experts on their respective topics from a range of countries across the world, this international book transcends national curricula and highlights global issues, problems, and trends in biology literacy.




The Effective Teaching of Biology


Book Description

The Effective Teaching of Biology aims to identify the special dimensions of the subject, how it contributes to the curriculum as a whole and why the teaching of biology differs from the teaching of other subjects. Current legal and safety requirements are provided together with practical teaching ideas and sources of information. The book also covers contemporary issues which are the subject of extensive debate, such as the changing patterns of assessment of pupils, the use of living organisms in school and the nature of learning difficulties which pupils experience.




Learning and Memory


Book Description

We learn and remember information by modifying synaptic connections in the neuronal networks of our brain. Depending on the type of information being stored, these changes occur in different regions and different circuits of the brain. The underlying circuit mechanisms are beginning to be understood. These mechanisms are capable of storing or reconstructing memories for periods ranging up to a lifetime, but they are also error-prone, as memories can be distorted or lost. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines important aspects of the neurobiology of learning and memory. Contributors review the various types of memory and the anatomical architectures and specialized cells involved. The induction of synaptic and cell-wide changes during memory encoding, the transcriptional and translational programs required for memory stabilization, the molecular signals that actively maintain memories, and the activation of neural ensembles during memory retrieval are comprehensively covered. The authors also discuss the model organisms and state-of-the-art technologies used to elucidate these processes. This volume will serve as a valuable reference for all neurobiologists and biomedical scientists as well as for cognitive and computational neuroscientists wishing to explore the remarkable phenomena of learning and memory.




Biology Inquiries


Book Description

Biology Inquiries offers educators a handbook for teaching middle and high school students engaging lessons in the life sciences. Inspired by the National Science Education Standards, the book bridges the gap between theory and practice. With exciting twists on standard biology instruction the author emphasizes active inquiry instead of rote memorization. Biology Inquiries contains many innovative ideas developed by biology teacher Martin Shields. This dynamic resource helps teachers introduce standards-based inquiry and constructivist lessons into their classrooms. Some of the book's classroom-tested lessons are inquiry modifications of traditional "cookbook" labs that biology teachers will recognize. Biology Inquiries provides a pool of active learning lessons to choose from with valuable tips on how to implement them.




High-School Biology Today and Tomorrow


Book Description

Biology is where many of science's most exciting and relevant advances are taking place. Yet, many students leave school without having learned basic biology principles, and few are excited enough to continue in the sciences. Why is biology education failing? How can reform be accomplished? This book presents information and expert views from curriculum developers, teachers, and others, offering suggestions about major issues in biology education: what should we teach in biology and how should it be taught? How can we measure results? How should teachers be educated and certified? What obstacles are blocking reform?




Human Learning: Biology, Brain, and Neuroscience


Book Description

Human learning is studied in a variety of ways. Motor learning is often studied separately from verbal learning. Studies may delve into anatomy vs function, may view behavioral outcomes or look discretely at the molecular and cellular level of learning. All have merit but they are dispersed across a wide literature and rarely are the findings integrated and synthesized in a meaningful way. Human Learning: Biology, Brain, and Neuroscience synthesizes findings across these levels and types of learning and memory investigation.Divided into three sections, each section includes a discussion by the editors integrating themes and ideas that emerge across the chapters within each section. Section 1 discusses general topics in human learning and cognition research, including inhibition, short term and long term memory, verbal memory, memory disruption, and scheduling and learning. Section 2 discusses cognitive neuroscience aspects of human learning. Coverage here includes models, skill acquisition, declarative and non declarative memory, age effects on memory, and memory for emotional events. Section 3 focuses on human motor learning.This book is suitable for cognitive neuroscientists, cognitive psychologists, kinesthesiologists, and graduate courses in learning. - Synthesizes research from a variety of disciplines, levels, and content areas - Provides section discussions on common findings between chapters - Covers motor and verbal learning




Learning and Inference in Computational Systems Biology


Book Description

Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific. Computational systems biology unifies the mechanistic approach of systems biology with the data-driven approach of computational biology. Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model--in other words, to answer specific questions about the underlying mechanisms of a biological system--in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon