The Biology of Oligodendrocytes


Book Description

Traditionally, oligodendrocytes have been assumed to play a minor supporting role in the central nervous system and their importance has generally been overlooked. For the first time, this book provides a dedicated review of all of the major aspects of oligodendrocyte biology, including development, organization, genetics, and immunobiology. Later chapters emphasize the importance of this underestimated cell to the mammalian central nervous system by exploring the role of myelin synthesis and maintenance in neural disease and repair. Particular attention is paid to multiple sclerosis (MS), arguably the prime example of an acquired demyelinating disease, with detailed examinations of the current concepts regarding demyelination, oligodendroglial damage, and remyelination in MS lesions.




Oligodendrocytes


Book Description

This volume looks at the study of oligodendrocytes through in vitro and in vivo techniques, multiple model organisms, using approaches that bridge scales from molecular through system. Chapters in this book cover topics such as fundamental molecular analyses of oligodendrocytes and myelin; in vitro, ex vivo, and in vivo molecular-cellular-electrophysiology-based techniques; oligodendrocyte formation, homeostasis, and disruption in zebrafish and Xenopus; and parallel system-level imaging of animal and human models. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Oligodendrocytes: Methods and Protocols is a valuable reference guide that highlights the expansive and fast-paced nature of research into oligodendrocyte biology underlying health and function.




Oligodendrocytes


Book Description

Oligodendrocytes have multiple functions in the central nervous system including mechanical support of neurons, production of myelin sheaths and uptake and inactivation of chemical neurotransmitters released by neurons. Consequently, oligodendrocytes could be involved in the pathology of a number of neurodegenerative diseases. The first chapter of this book examines the range of disorders in which oligodendrocytes play a significant role. In the second chapter, the authors review the effects of microglia on oligodendrocytes in both physiological and pathological conditions. The third chapter focuses on cell transplantation for myelination of axons in spinal cord repair. In the fourth chapter, the authors review data showing the induction of some plasticity of olidogdendrocytes (OL) by growth factors and axon proteins in vitro. Finally, the last chapter is an examination of the potential uses of anti-S100B therapies to treat myelin-related disorders in order to reduce damage and improve recovery, as well as the quality of life of these patients.




The Glutamate/GABA-Glutamine Cycle


Book Description

Fundamental biochemical studies of basic brain metabolism focusing on the neuroactive amino acids glutamate and GABA combined with the seminal observation that one of the key enzymes, glutamine synthetase is localized in astroglial cells but not in neurons resulted in the formulation of the term “The Glutamate-Glutamine Cycle.” In this cycle glutamate released from neurons is taken up by surrounding astrocytes, amidated by the action of glutamine synthetase to glutamine which can be transferred back to the neurons. The conversion of glutamate to glutamine is like a stealth technology, hiding the glutamate molecule which would be highly toxic to neurons due to its excitotoxic action. This series of reactions require the concerted and precise interaction of a number of enzymes and plasma membrane transporters, and this volume provides in-depth descriptions of these processes. Obviously such a series of complicated reactions may well be prone to malfunction and therefore neurological diseases are likely to be associated with such malfunction of the enzymes and transporters involved in the cycle. These aspects are also discussed in several chapters of the book. A number of leading experts in neuroscience including intermediary metabolism, enzymology and transporter physiology have contributed to this book which provides comprehensive discussions of these different aspects of the functional importance of the glutamate-glutamine cycle coupling homeostasis of glutamatergic, excitatory neurotransmission to basic aspects of brain energy metabolism. This book will be of particular importance for students as well as professionals interested in these fundamental processes involved in brain function and dysfunction.




Neuroimmune Pharmacology


Book Description

The second edition of Neuroimmune Pharmacology bridges the disciplines of neuroscience, immunology and pharmacology from the molecular to clinical levels with particular thought made to engage new research directives and clinical modalities. Bringing together the foremost field authorities from around the world, Neuroimmune Pharmacology will serve as an invaluable resource for the basic and applied scientists of the current decade and beyond.




Oligodendrocyte Physiology and Pathology Function


Book Description

The adult vertebrate central nervous system mainly consists of neurons, astrocytes, microglia cells, and oligodendrocytes. Oligodendrocytes, the myelin-forming cells of the CNS, are subjected to cell stress and subsequent death in a number of metabolic or inflammatory disorders, among which multiple sclerosis (MS) is included. This disease is associated with the development of large demyelinated plaques, oligodendrocyte destruction, and axonal degeneration, paralleled by the activation of astrocytes and microglia as well as the recruitment of peripheral immune cells to the site of tissue injury. Of note, viable oligodendrocytes and an intact myelin sheath are indispensable for neuronal health. For example, it has been shown that oligodendrocytes provide nutritional support to neurons, fast axonal transport depends on proper oligodendrocyte function, and mice deficient in mature myelin proteins eventually display severe neurodegeneration. This Special Issue contains a collection of highly relevant primary research articles as well as review articles focusing on the development, physiology, and pathology of the oligodendrocyte–axon–myelin unit.




Glial Neurobiology


Book Description

"This volume is a very valuable and much needed contribution." –Quarterly Review of Biology AT LAST - A comprehensive, accessible textbook on glial neurobiology! Glial cells are the most numerous cells in the human brain but for many years have attracted little scientific attention. Neurophysiologists concentrated their research efforts instead, on neurones and neuronal networks because it was thought that they were the key elements responsible for higher brain function. Recent advances, however, indicate this isn’t exactly the case. Not only are astroglial cells the stem elements from which neurones are born, but they also control the development, functional activity and death of neuronal circuits. These ground-breaking developments have revolutionized our understanding of the human brain and the complex interrelationship of glial and neuronal networks in health and disease. Features of this book: an accessible introduction to glial neurobiology including an overview of glial cell function and its active role in neural processes, brain function and nervous system pathology an exploration of all the major types of glial cells including: the astrocytes, oligodendrocytes and microglia of the ACNS and Schwann cells of the peripheral nervous system; the book also presents a broad overview of glial receptors and ion channels an investigation into the role of glial cells in various types of brain diseases including stroke, neurodegenerative diseases such as Alzheimer's, Parkinson's and Alexander's disease, brain oedema, multiple sclerosis and many more a wealth of illustrations, including unique images from the authors' own libraries of images, describing the main features of glial cells Written by two leading experts in the field, Glial Neurobiology provides a concise, authoritative introduction to glial physiology and pathology for undergraduate/postgraduate neuroscience, biomedical, medical, pharmacy, pharmacology, and neurology, neurosurgery and physiology students. It is also an invaluable resource for researchers in neuroscience, physiology, pharmacology and pharmaceutics.




The Biology of Multiple Sclerosis


Book Description

Multiple sclerosis is the most common debilitating neurological disease in people under the age of forty in the developed world. Many publications cover medical and clinical approaches to the disease; however, The Biology of Multiple Sclerosis provides a clear and concise up-to-date overview of the scientific literature on the various theories of MS pathogenesis. Covering the main elements of scientific research into multiple sclerosis, the book contains chapters on the neuropathology of the disease as well as an account of the most extensively used animal model experimental autoimmune encephalomyelitis. The book contains chapters regarding the role of viruses in the development of multiple sclerosis. Viruses have long been implicated and chapters on animal models based on virus infection, as well as their possible role in the etiology of MS, are included. Of interest to MS researchers, the book is written to also be of value to postgraduate and medical students.




Glial Cells in Health and Disease of the CNS


Book Description

A timely overview covering the three major types of glial cells in the central nervous system - astrocytes, microglia, and oligodendrocytes. New findings on glia biology are overturning a century of conventional thinking about how the brain operates and are expanding our knowledge about information processing in the brain. The book will present recent research findings on the role of glial cells in both healthy function and disease. It will comprehensively cover a broad spectrum of topics while remaining compact in size.




Glia


Book Description

The majority of cells in the nervous system are glia. Long thought of as passive bystanders, glial cells are increasingly being appreciated for their active roles in nourishing, supporting, and protecting the neuronal cells that relay electrical signals through the nervous system. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines the development of the major classes of glial cells-astrocytes, oligodendrocytes, Schwann cells, and microglia-and their roles in normal physiology and disease. The contributors describe how glia help establish and refine synaptic connections, maintain the metabolic and ionic milieu of nerve cells, myelinate axons, modulate nerve signal propagation, and contribute to the blood-brain barrier. The biological characteristics of glial cells in vertebrate and invertebrate model systems, including those of Drosophila, Caenorhabditis elegans, and zebrafish, are also covered. The authors also discuss the roles of glia in repair and regeneration, as well as in cancer and neurodegenerative diseases (e.g., Alzheimer's). This volume is therefore a valuable reference for all neurobiologists and biomedical scientists wishing to understand these diverse and dynamic cells.