Biochemical Adaptation


Book Description

This book discusses biochemical adaptation to environments from freezing polar oceans to boiling hot springs, and under hydrostatic pressures up to 1,000 times that at sea level. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.










Protein Adaptation in Extremophiles


Book Description

Life has evolved in an extraordinary way to deal with the most extreme physical and chemical conditions. Extremophilic (extreme-loving) organisms have been found in the superheated waters of deep ocean vents or the hypersaline and cold lakes of Antarctica and indeed often require the extreme conditions of their habitat to survive and thrive. The cellular machinery of extremophiles has developed unique adaptation strategies to effectively function in their given environment. Much scientific attention has focussed on the adaptation of proteins as they have both structural and catalytic functions and hence play key roles in all cellular processes. Moreover, their ability to perform in or withstand extreme physical and chemical conditions has made extremophilic proteins attractive bio-catalysts for a range of industrial and biotechnological applications. This novel and significant book comprehensively summarises our current understanding regarding the structure-function-stability relationship of extremophilic proteins. Leading experts in the field extensively review and comment on the adaptation of proteins to the whole spectrum of physical and chemical extremes. This book represents an important and indispensable reference for students, teachers and researchers with interest or activities in the fascinating area of extremophiles.




Complex Population Dynamics


Book Description

Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.