The Calculus Collection


Book Description

The Calculus Collection is a useful resource for everyone who teaches calculus, in high school or in a 2- or 4-year college or university. It consists of 123 articles, selected by a panel of six veteran high school teachers, each of which was originally published in Math Horizons, MAA Focus, The American Mathematical Monthly, The College Mathematics Journal, or Mathematics Magazine. The articles focus on engaging students who are meeting the core ideas of calculus for the first time. The Calculus Collection is filled with insights, alternate explanations of difficult ideas, and suggestions for how to take a standard problem and open it up to the rich mathematical explorations available when you encourage students to dig a little deeper. Some of the articles reflect an enthusiasm for bringing calculators and computers into the classroom, while others consciously address themes from the calculus reform movement. But most of the articles are simply interesting and timeless explorations of the mathematics encountered in a first course in calculus.




A Collection of Problems on Complex Analysis


Book Description

Over 1500 problems on theory of functions of the complex variable; coverage of nearly every branch of classical function theory. Topics include conformal mappings, integrals and power series, Laurent series, parametric integrals, integrals of the Cauchy type, analytic continuation, Riemann surfaces, much more. Answers and solutions at end of text. Bibliographical references. 1965 edition.




Calculus Set Free


Book Description

Calculus Set Free: Infinitesimals to the Rescue is a single-variable calculus textbook that incorporates the use of infinitesimal methods. The procedures used throughout make many of the calculations simpler and the concepts clearer for undergraduate students, heightening success and easing a significant burden of entry into STEM disciplines. This text features a student-friendly exposition with ample marginal notes, examples, illustrations, and more. The exercises include a wide range of difficulty levels, stretching from very simple rapid response questions to the occasional exercise meant to test knowledge. While some exercises require the use of technology to work through, none are dependent on any specific software. The answers to odd-numbered exercises in the back of the book include both simplified and non-simplified answers, hints, or alternative answers. Throughout the text, notes in the margins include comments meant to supplement understanding, sometimes including line-by-line commentary for worked examples. Without sacrificing academic rigor, Calculus Set Free offers an engaging style that helps students to solidify their understanding on difficult theoretical calculus.




100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection


Book Description

This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes. Stephan Ramon Garcia is WM Keck Distinguished Service Professor and professor of mathematics at Pomona College. He is the author of four books and over eighty research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and other fields. He has coauthored dozens of articles with students, including one that appeared in The Best Writing on Mathematics: 2015. He is on the editorial boards of Notices of the AMS, Proceedings of the AMS, American Mathematical Monthly, Involve, and Annals of Functional Analysis. He received four NSF research grants as principal investigator and five teaching awards from three different institutions. He is a fellow of the American Mathematical Society and was the inaugural recipient of the Society's Dolciani Prize for Excellence in Research. Steven J. Miller is professor of mathematics at Williams College and a visiting assistant professor at Carnegie Mellon University. He has published five books and over one hundred research papers, most with students, in accounting, computer science, economics, geophysics, marketing, mathematics, operations research, physics, sabermetrics, and statistics. He has served on numerous editorial boards, including the Journal of Number Theory, Notices of the AMS, and the Pi Mu Epsilon Journal. He is active in enrichment and supplemental curricular initiatives for elementary and secondary mathematics, from the Teachers as Scholars Program and VCTAL (Value of Computational Thinking Across Grade Levels), to numerous math camps (the Eureka Program, HCSSiM, the Mathematics League International Summer Program, PROMYS, and the Ross Program). He is a fellow of the American Mathematical Society, an at-large senator for Phi Beta Kappa, and a member of the Mount Greylock Regional School Committee, where he sees firsthand the challenges of applying mathematics.




Mathematics for Social Justice: Resources for the College Classroom


Book Description

Mathematics for Social Justice offers a collection of resources for mathematics faculty interested in incorporating questions of social justice into their classrooms. The book begins with a series of essays from instructors experienced in integrating social justice themes into their pedagogy; these essays contain political and pedagogical motivations as well as nuts-and-bolts teaching advice. The heart of the book is a collection of fourteen classroom-tested modules featuring ready-to-use activities and investigations for the college mathematics classroom. The mathematical tools and techniques used are relevant to a wide variety of courses including college algebra, math for the liberal arts, calculus, differential equations, discrete mathematics, geometry, financial mathematics, and combinatorics. The social justice themes include human trafficking, income inequality, environmental justice, gerrymandering, voting methods, and access to education. The volume editors are leaders of the national movement to include social justice material into mathematics teaching. Gizem Karaali is Associate Professor of Mathematics at Pomona College. She is one of the founding editors of The Journal of Humanistic Mathematics, and an associate editor for The Mathematical Intelligencer and Numeracy ; she also serves on the editorial board of the MAA's Carus Mathematical Monographs. Lily Khadjavi is Associate Professor of Mathematics at Loyola Marymount University and is a past co-chair of the Infinite Possibilities Conference. She has served on the boards of Building Diversity in Science, the Barbara Jordan-Bayard Rustin Coalition, and the Harvard Gender and Sexuality Caucus.




Calculus


Book Description




From the Calculus to Set Theory 1630-1910


Book Description

From the Calculus to Set Theory traces the development of the calculus from the early seventeenth century through its expansion into mathematical analysis to the developments in set theory and the foundations of mathematics in the early twentieth century. It chronicles the work of mathematicians from Descartes and Newton to Russell and Hilbert and many, many others while emphasizing foundational questions and underlining the continuity of developments in higher mathematics. The other contributors to this volume are H. J. M. Bos, R. Bunn, J. W. Dauben, T. W. Hawkins, and K. Møller-Pedersen.




Advanced Calculus


Book Description




The Calculus of Complex Functions


Book Description

The book introduces complex analysis as a natural extension of the calculus of real-valued functions. The mechanism for doing so is the extension theorem, which states that any real analytic function extends to an analytic function defined in a region of the complex plane. The connection to real functions and calculus is then natural. The introduction to analytic functions feels intuitive and their fundamental properties are covered quickly. As a result, the book allows a surprisingly large coverage of the classical analysis topics of analytic and meromorphic functions, harmonic functions, contour integrals and series representations, conformal maps, and the Dirichlet problem. It also introduces several more advanced notions, including the Riemann hypothesis and operator theory, in a manner accessible to undergraduates. The last chapter describes bounded linear operators on Hilbert and Banach spaces, including the spectral theory of compact operators, in a way that also provides an excellent review of important topics in linear algebra and provides a pathway to undergraduate research topics in analysis. The book allows flexible use in a single semester, full-year, or capstone course in complex analysis. Prerequisites can range from only multivariate calculus to a transition course or to linear algebra or real analysis. There are over one thousand exercises of a variety of types and levels. Every chapter contains an essay describing a part of the history of the subject and at least one connected collection of exercises that together comprise a project-level exploration.




Resources for Teaching Discrete Mathematics


Book Description

Hopkins collects the work of 35 instructors who share their innovations and insights about teaching discrete mathematics at the high school and college level. The book's 9 classroom-tested projects, including building a geodesic dome, come with student handouts, solutions, and notes for the instructor. The 11 history modules presented draw on original sources, such as Pascal's "Treatise on the Arithmetical Triangle," allowing students to explore topics in their original contexts. Three articles address extensions of standard discrete mathematics content. Two other articles explore pedagogy specifically related to discrete mathematics courses: adapting a group discovery method to larger classes, and using logic in encouraging students to construct proofs.