Finite Difference Equations


Book Description

Comprehensive study focuses on use of calculus of finite differences as an approximation method for solving troublesome differential equations. Elementary difference operations; interpolation and extrapolation; modes of expansion of the solutions of nonlinear equations, applications of difference equations, difference equations associated with functions of two variables, more. Exercises with answers. 1961 edition.




A Treatise on the Calculus of Finite Differences


Book Description

Written by the founder of symbolic logic (and Boolean algebra), this classic treatise on the calculus of finite differences offers a thorough discussion of the basic principles of the subject, covering nearly all the major theorems and methods with clarity and rigor. Includes more than 200 problems. 1872 edition.







A Treatise on the Calculus of Finite Differences


Book Description

Written by the founder of symbolic logic (and Boolean algebra), this classic treatise on the calculus of finite differences offers a thorough discussion of the basic principles of the subject, covering nearly all the major theorems and methods with clarity and rigor. Includes more than 200 problems. 1872 edition.




Finite Difference Computing with Exponential Decay Models


Book Description

This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.







The Mimetic Finite Difference Method for Elliptic Problems


Book Description

This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.




Finite Difference Methods on Irregular Networks


Book Description

No detailed description available for "Finite Difference Methods on Irregular Networks".




Nonstandard Finite Difference Models of Differential Equations


Book Description

This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.




Numerical Solution of Differential Equations


Book Description

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.