The Calculus of Variations in the Large


Book Description

Morse theory is a study of deep connections between analysis and topology. In its classical form, it provides a relationship between the critical points of certain smooth functions on a manifold and the topology of the manifold. It has been used by geometers, topologists, physicists, and others as a remarkably effective tool to study manifolds. In the 1980s and 1990s, Morse theory was extended to infinite dimensions with great success. This book is Morse's own exposition of his ideas. It has been called one of the most important and influential mathematical works of the twentieth century. Calculus of Variations in the Large is certainly one of the essential references on Morse theory.




Calculus of Variations


Book Description

First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.







Calculus of Variations and Optimal Control Theory


Book Description

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control




Differential Equations and the Calculus of Variations


Book Description

Originally published in the Soviet Union, this text is meant for students of higher schools and deals with the most important sections of mathematics - differential equations and the calculus of variations. The first part describes the theory of differential equations and reviews the methods for integrating these equations and investigating their solutions. The second part gives an idea of the calculus of variations and surveys the methods for solving variational problems. The book contains a large number of examples and problems with solutions involving applications of mathematics to physics and mechanics. Apart from its main purpose the textbook is of interest to expert mathematicians. Lev Elsgolts (deceased) was a Doctor of Physico-Mathematical Sciences, Professor at the Patrice Lumumba University of Friendship of Peoples. His research work was dedicated to the calculus of variations and differential equations. He worked out the theory of differential equations with deviating arguments and supplied methods for their solution. Lev Elsgolts was the author of many printed works. Among others, he wrote the well-known books Qualitative Methods in Mathematical Analysis and Introduction to the Theory of Differential Equations with Deviating Arguments. In addition to his research work Lev Elsgolts taught at higher schools for over twenty years.







Introduction To The Fractional Calculus Of Variations


Book Description

This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a natural way. The authors prove the necessary Euler-Lagrange conditions and corresponding Noether theorems for several types of fractional variational problems, with and without constraints, using Lagrangian and Hamiltonian formalisms. Sufficient optimality conditions are also obtained under convexity, and Leitmann's direct method is discussed within the framework of FCV.The book is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and ambitious undergraduates in mathematics and mechanics. It provides an opportunity for an introduction to FCV for experienced researchers. The explanations in the book are detailed, in order to capture the interest of the curious reader, and the book provides the necessary background material required to go further into the subject and explore the rich research literature./a




Functional Analysis, Calculus of Variations and Optimal Control


Book Description

Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.




Lecture Notes On Calculus Of Variations


Book Description

This is based on the course 'Calculus of Variations' taught at Peking University from 2006 to 2010 for advanced undergraduate to graduate students majoring in mathematics. The book contains 20 lectures covering both the theoretical background material as well as an abundant collection of applications. Lectures 1-8 focus on the classical theory of calculus of variations. Lectures 9-14 introduce direct methods along with their theoretical foundations. Lectures 15-20 showcase a broad collection of applications. The book offers a panoramic view of the very important topic on calculus of variations. This is a valuable resource not only to mathematicians, but also to those students in engineering, economics, and management, etc.




Introduction to the Calculus of Variations


Book Description

The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.