The Capsicum Genome


Book Description

This book contains complete information on Capsicum genetic resources, diversity, evolution, history and advances in capsicum improvement from classical breeding to whole genome sequencing, genomics, databases and its impact on next generation pepper breeding. Capsicum is one of the most important Solanaceae crops grown worldwide as vegetables and spices. Due to its high economic value and to meet the demands of enormous population growth amid biotic and abiotic stresses, there has been an ongoing breeding program utilizing available genetic resources with desired traits to increase the sustainable productivity of this crop for several decades. However, the precision breeding of this crop for desired traits only started with the advent of molecular markers. The recent advances in high-throughput genome sequencing technologies helped in the quick decoding of transcriptome, epigenome, nuclear and organeller genomes, thereby enhancing our understanding of the structure and function of the Capsicum genome, and helping in genomics assisted breeding. These advanced technologies coupled with conventional mapping have greatly contributed towards dissection and manipulation of economically important traits more precisely and made less time consuming.




Genetics, Genomics and Breeding of Peppers and Eggplants


Book Description

Peppers and eggplants are two leading vegetable crops produced and consumed worldwide. To facilitate the breeding for agronomical traits such as disease resistance and quality, diverse molecular genetic studies have been carried out. Recent achievements on pepper genome sequencing and trait-linked marker development have enabled the cloning of genes involved in useful traits. This book explores the agronomical and evolutionary characteristics of peppers and eggplants and the results of molecular genetic studies. Topics include molecular linkage maps and candidate gene approaches in capsicum and the structure of the pepper genome.




Peppers


Book Description

Although thought of as a minor crop, peppers are a major world commodity due to their great versatility. They are used not only as vegetables in their own right but also as flavourings in food products, pharmaceuticals and cosmetics. Aimed at advanced students and growers, this second edition expands upon topics covered in the first, such as the plant's history, genetics, production, diseases and pests, and brings the text up to date with current research and understanding of this genus. New material includes an expansion of marker-assisted breeding to cover the different types of markers available, new directions, and trends in the industry, the loss of germplasm and access to it, and the long term preservation of Capsicum resources worldwide. It is suitable for horticultural researchers, extension workers, academics, breeders, growers, and students.




Capsicum


Book Description

Capsicum, more commonly as chili or chili pepper, is an important global vegetable and spice crop. Anthracnose disease, caused by a complex of Colletotrichum species, is the major biotic stress limiting chili production in tropical and subtropical countries. Anthracnose disease mainly manifests itself as a post-harvest disease, resulting in large necrotic lesions on the fruit. This disease is mainly controlled by the application of a "cocktail" of fungicides as commercial resistant cultivars are not available. In recent years, insights into the complexity of the pathogen and the genomics of the host have been accomplished using cutting-edge molecular technologies. The author has been at the forefront of this technology revolution in Capsicum breeding through her research to understand the host and pathogen which has led to the development of new anthracnose resistant genotypes. Capsicum: Breeding Strategies for Anthracnose Resistance is structured based on a review of the origin and evolution of Capsicum, Capsicum genetic diversity and germplasm resources, the latest research in the biology and taxonomy of Colletotrichum pathogens of Capsicum, and the classic and molecular breeding for resistance in Capsicum to the suite of Colletotrichum pathogens that infect Capsicum globally. This book brings together knowledge on both the pathogen and the host, which is often overlooked when reviewing the breeding and genetics of a crop plant. It informs the facts behind breeding for resistance from both the host and pathogen perspectives.




Genetics, Genomics and Breeding of Peppers and Eggplants


Book Description

Peppers and eggplants are two leading vegetable crops produced and consumed worldwide. To facilitate the breeding for agronomical traits such as disease resistance and quality, diverse molecular genetic studies have been carried out. Recent achievements on pepper genome sequencing and trait-linked marker development have enabled the cloning of gene




Molecular Genetic Analysis of Populations


Book Description

Methods enabling the direct study of genetic variation in natural populations have improved considerably. The new edition explores these updated techniques in DNA analysis and provides a revised and refined laboratory guide to investigating variation in DNA molecules.




Peppers


Book Description

The group of plants known as 'peppers' is diverse, containing types that contribute to the fresh and processed food markets as well as varieties that are used in pharmaceuticals and other non-food commercial products. Peppers originally developed in tropical regions, but are now grown and used in every country where it is possible to grow them, including in areas where production is difficult. This book examines peppers from historical, genetic, physiological and production perspectives, following the development of the cultivated crop from the wild type. Diverse examples of pod types and thei.




Omics in Horticultural Crops


Book Description

Omics in Horticulture Crops presents a comprehensive view of germplasm diversity, genetic evolution, genomics, proteomics and transcriptomics of fruit crops (temperate, tropical and subtropical fruits, fruit nuts, berries), vegetables, tuberous crops, ornamental and floricultural crops and medicinal aromatic plants. Information covering phenomics, genetic diversity, phylogenetic studies, genome sequencing, and genome barcoding through the utilization of molecular markers plays an imperative role in the characterization and effective utilization of diverse germplasm are included in the book. This is a valuable reference for researchers and academics seeking to improve cultivar productivity through enhanced genetic diversity while also retaining optimal traits and protecting the growing environment. - Highlights perspectives, progress and promises of -omics application - Provides a systematic overview of origin, progenitor and domestication process as well as genetic insights - Includes full range of horticultural crops




Genomic Designing for Biotic Stress Resistant Vegetable Crops


Book Description

Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomics-assisted breeding and the recently emerging genome editing for developing resistant varieties in vegetable crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The nine chapters each dedicated to a vegetable crop or crop-group in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and better quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.




Genetics, Genomics and Breeding of Potato


Book Description

In this volume, world leaders in potato research review historical and contemporary discoveries resulting in a range of advances. Topics include nutritional quality, yield, disease and insect resistance, processing, plant growth and development, and other aspects. The book also examines research yielding significant molecular resources that facilit