The Casimir Effect and Its Applications


Book Description

Of value to the general scientific public, this is the first book in the world scientific literature devoted to the Casimir effect. This topic has important applications in the fields of elementary particle physics, statistical physics, quantum field theory, gravitation and cosmology.




The Casimir Effect


Book Description

In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction OCo which may be either attractive or repulsive OCo between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically transparent Green''s function techniques, and makes applications from quarks to the cosmos, as well as observable consequences in condensed matter systems. It is aimed at graduate students and researchers in theoretical physics, quantum field theory, and applied mathematics. Contents: Introduction to the Casimir Effect; Casimir Force Between Parallel Plates; Casimir Force Between Parallel Dielectrics; Casimir Effect with Perfect Spherical; The Casimir Effect of a Dielectric Ball: The Equivalence of the Casimir Effect and van der Waals Forces; Application to Hadronic Physics: Zero-Point Energy in the Bag Model; Casimir Effect in Cylindrical Geometries; Casimir Effect in Two Dimensions: The Maxwell-Chern-Simons Casimir Effect; Casimir Effect on a D -dimensional Sphere; Cosmological Implications of the Casimir Effect; Local Effects; Sonoluminescene and the Dynamical Casimir Effect; Radiative Corrections to the Casimir Effect; Conclusions and Outlook; Appendices: Relation of Contour Integral Method to Green''s Function Approach; Casimir Effect for a Closed String. Readership: High-energy, condensed-matter and nuclear physicists."




Advances in the Casimir Effect


Book Description

The subject of this book is the Casimir effect, a manifestation of zero-point oscillations of the quantum vacuum resulting in forces acting between closely spaced bodies. For the benefit of the reader, the book assembles field-theoretical foundations of this phenomenon, applications of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force with a comparison between experiment and theory. There is an urgent need for a book of this type, given the increase of interest in forces originating from the quantum vacuum. Numerous new results have been obtained in the last few years which are not reflected in previous books on the subject, but which are very promising for fundamental science and nanotechnology. The book is a unique source of information presenting a critical assessment of all the main results and approaches from hundreds of journal papers. It also outlines new ideas which have not yet been universally accepted but which are finding increasing support from experiment.




Casimir Physics


Book Description

Casimir effects serve as primary examples of directly observable manifestations of the nontrivial properties of quantum fields, and as such are attracting increasing interest from quantum field theorists, particle physicists, and cosmologists. Furthermore, though very weak except at short distances, Casimir forces are universal in the sense that all material objects are subject to them. They are thus also an increasingly important part of the physics of atom-surface interactions, while in nanotechnology they are being investigated not only as contributors to ‘stiction’ but also as potential mechanisms for actuating micro-electromechanical devices. While the field of Casimir physics is expanding rapidly, it has reached a level of maturity in some important respects: on the experimental side, where most sources of imprecision in force measurements have been identified as well as on the theoretical side, where, for example, semi-analytical and numerical methods for the computation of Casimir forces between bodies of arbitrary shape have been successfully developed. This book is, then, a timely and comprehensive guide to the essence of Casimir (and Casimir-Polder) physics that will have lasting value, serving the dual purpose of an introduction and reference to the field. While this volume is not intended to be a unified textbook, but rather a collection of largely independent chapters written by prominent experts in the field, the detailed and carefully written articles adopt a style that should appeal to non-specialist researchers in the field as well as to a broader audience of graduate students.




Introduction to Quantum Effects in Gravity


Book Description

Publisher description




Developments and Novel Approaches in Biomechanics and Metamaterials


Book Description

This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019




Casimir Effect, The: Physical Manifestations Of Zero-point Energy


Book Description

In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction — which may be either attractive or repulsive — between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks.This monograph develops the theory of such forces, based primarily on physically transparent Green's function techniques, and makes applications from quarks to the cosmos, as well as observable consequences in condensed matter systems. It is aimed at graduate students and researchers in theoretical physics, quantum field theory, and applied mathematics.




The Casimir Effect in Critical Systems


Book Description

The well-known Casimir effect has a direct analogue in systems near critical or multicritical points. Critical fluctuations in systems confined to finite geometries lead to attractive or repulsive forces between system boundaries. These forces influence the formation of wetting layers of liquid 4He or binary liquid mixtures near critical points in these fluids. With the aid of recently developed versions of the atomic force microscope, these forces appear to be directly measurable. The book contains an introduction to the physics of critical phenomena and reviews the most recent developments in the theory of finite-size scaling. A detailed discussion of the Casimir effect and related questions follows. The analysis of quantitative effects on the specific heat of critical films, the formation of wetting layers, and force measurements finish the presentation. This is perhaps the first book on the critical Casimir effect.




The Casimir Effect


Book Description




A Guide to Feynman Diagrams in the Many-Body Problem


Book Description

Superb introduction for nonspecialists covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and more. "A great delight." — Physics Today. 1974 edition.