Analytic Capacity, Rectifiability, Menger Curvature and Cauchy Integral


Book Description

Based on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular, these notes contain a description of Peter Jones' geometric traveling salesman theorem, the proof of the equivalence between uniform rectifiability and boundedness of the Cauchy operator on Ahlfors-regular sets, the complete proofs of the Denjoy conjecture and the Vitushkin conjecture (for the latter, only the Ahlfors-regular case) and a discussion of X. Tolsa's solution of the Painlevé problem.




Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory


Book Description

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995–2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin’s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.




Harmonic Analysis and Boundary Value Problems


Book Description

This volume presents research and expository articles by the participants of the 25th Arkansas Spring Lecture Series on ``Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View'' held at the University of Arkansas (Fayetteville). Papers in this volume provide clear and concise presentations of many problems that are at the forefront of harmonic analysis and partial differential equations. The following topics are featured: the solution of the Kato conjecture, the ``two bricks'' problem, new results on Cauchy integrals on non-smooth curves, the Neumann problem for sub-Laplacians, and a new general approach to both divergence and nondivergence second order parabolic equations based on growth theorems. The articles in this volume offer both students and researchers a comprehensive volume of current results in the field.




Rectifiability


Book Description

Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside.




Harmonic Analysis at Mount Holyoke


Book Description

This volume contains the proceedings of the conference on harmonic analysis and related areas. The conference provided an opportunity for researchers and students to exchange ideas and report on progress in this large and central field of modern mathematics. The volume is suitable for graduate students and research mathematicians interested in harmonic analysis and related areas.




Harmonic Analysis, Partial Differential Equations, and Related Topics


Book Description

This collection of contributed articles comprises the scientific program of the fifth annual Prairie Analysis Seminar. All articles represent important current advances in the areas of partial differential equations, harmonic analysis, and Fourier analysis. A range of interrelated topics is presented, with articles concerning Painleve removability, pseudodifferential operators, $A p$ weights, nonlinear Schrodinger equations, singular integrals, the wave equation, the Benjamin-Ono equation, quasi-geostrophic equations, quasiconformal mappings, integral inclusions, Bellman function methods, weighted gradient estimates, Hankel operators, and dynamic optimization problems. Most importantly, the articles illustrate the fruitful interaction between harmonic analysis, Fourier analysis, and partial differential equations, and illustrate the successful application of techniques and ideas from each of these areas to the others.




Perspectives in Partial Differential Equations, Harmonic Analysis and Applications


Book Description

This volume contains a collection of papers contributed on the occasion of Mazya's 70th birthday by a distinguished group of experts of international stature in the fields of harmonic analysis, partial differential equations, function theory, and spectral analysis, reflecting the state of the art in these areas.




Advanced Courses Of Mathematical Analysis Ii - Proceedings Of The Second International School


Book Description

This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of new directions and advances in topics for current and future research in the field.




Vitushkin’s Conjecture for Removable Sets


Book Description

Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 1-5 of the book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.




The Riesz Transform of Codimension Smaller Than One and the Wolff Energy


Book Description

Fix $dgeq 2$, and $sin (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-Delta )^alpha /2$, $alpha in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.