The Cell Biology of Sponges


Book Description

Modem biology owes much to the study of favorable model systems which fa cilitates the realization of critical experiments and results in the introduction of new concepts. Examples of such systems are numerous and studies of them are regularly recognized by the scientific community. The 1983 Nobel Prize in Med icine and Physiology is a magnificent example in which com plants served as the experimental model. In a manner somewhat more modest, other biological systems have attracted recognition due to their critical phylogenetic position, or indeed because of their uniqueness which distinguishes them from all other organisms. Assuredly, among the whole assemblage ofliving organisms, sponges stand out as worthy of interest by scientists: they are simultaneously models, an important group in evolution, and animals unlike others. As early as the beginning of this century, sponges appeared as exceptional models for the study of phenomena of cell recognition. Innumerable works have been dedicated to understanding the mechanisms which assure the reaggregation of dissociated cells and the reconstitution of a functional individual. Today, re search on these phenomena is at the ultimate, molecular level. Through an as semblage of characteristics the sponges are, based upon all available evidence, the most primitive Metazoans. Their tissues-perhaps one can say their cell groups-are loosely assembled (they possess no tight or gap junctions), cell dif ferentiation appears highly labile, and they do not develop any true organs. But, they are most certainly Metazoans.




Sponges (Porifera)


Book Description

Sponges (phylum Porifera) are known to be very rich sources for bioactive compounds, mainly secondary metabolites. Main efforts are devoted to cell- and mariculture of sponges to assure a sustainable exploitation of bioactive compounds from biological starting material. These activities are flanked by improved technologies to cultivate bacteria and fungi which are associated with the sponges. It is the hope that by elucidating the strategies of interaction between microorganisms and their host (sponge), by modern cell and molecular biological methods, a more comprehensive cultivation of the symbiotic organisms will be possible. The next step in the transfer of knowledge to biotechnological applications is the isolation, characterization and structural determination of the bioactive compounds by sophisticated chemical approaches.




Concepts of Biology


Book Description

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.




The Comparative Embryology of Sponges


Book Description

One of the major questions in the evolution of animals is the transition from unicellular to multicellular organization, which resulted in the emergence of Metazoa through a hypothetical Urmetazoa. The Comparative Embryology of Sponges contains abundant original and literary data on comparative embryology and morphology of the Porifera (Sponges), a group of 'lower Metazoa'. On the basis of this material, original typization of the development of Sponges is given and the problems concerning origin and evolution of Porifera and their ontogenesis are discussed. A morphogenetic interpretation of the body plan development during embryogenesis, metamorphosis and asexual reproduction in Sponges is proposed. Special attention is given to the analysis of characteristic features of the ontogenesis in Porifera. The book pursues three primary goals: 1) generalization of all existing information on individual development of sponges, its classification and a statement according to taxonomical structure of Porifera; 2) revealing of heterogeneity of morphogenesis and peculiarities of ontogeneses in various clades of Porifera, and also their correlations with the organization, both adult sponges, and their larvae; 3) revealing homology of morphogeneses in both Porifera and Eumetazoa, testifying to the general evolutionary roots of multicellular animals, and peculiar features of sponges' morphogeneses and ontogenesis. This book will be of interest to embryologists, zoologists, morphologists and researchers in evolutionary biology.




Stem Cells


Book Description

Much of our knowledge of stem cells has been inferred from studies of remarkable few species. The ability to manipulate stem cells in “model” organisms such as the mouse and a few other vertebrate species has driven our understanding of basic biology of stem cells. The power and efficiency of studying model organisms, however, comes at a cost since a few species, obviously, do not reflect nature ́s true diversity. Unfortunately, although all multicellular organisms seem to rely on stem cells, and although this seems to be a question of key importance for understanding the evolution of animal life, little is known about stem cells in early-branching taxa. “Stem Cells: From Hydra to Man” illustrates that there is more than human and mouse stem cells to learn from. Reflecting an enormous growth in the knowledge of stem cells in various organisms, the book presents the conceptual language and the nature of questions, as well as a summary of the advances in our understanding of stem cells from a comparative point of view that has resulted from the development of new technology and the development of novel model organisms over the past few decades. As such this book is largely a horizon analysis of a frontier rather than a retrospective. It presents an integrative approach to animal stem cells and covers the major contributions, tools and trends in a newly emerging field: comparative stem cell biology.




Systema Porifera


Book Description

Research whilst compiling this book has uncovered a fauna about twice the size as that previously published in the literature and consequently Systema Porifera revises and stabilizes the systematics of the phylum to accommodate this new knowledge in a contemporary framework. Practical tools (key illustrations, descriptions of character) are provided to facilitate the assignment of approximately 680 extant and 100 fossil genera. Systema Porifera is unique making sponge taxonomy widely available at the practical level of classification (genera, families, order). It is a taxonomic revision of sponges and spongiomorphis (such as sphinctozoans and archaeocyathans) based on re-evaluation of type materials and evidence. It is also a practical guide to sponge identification providing descriptions and illustrations of characters and interpretation of their importance to systematics. Systema Porifera addresses many long standing nomenclatural problems and provides a sound baseline for future debate on sponges and their place in time and space. Systema Porifera describes 3 classes, 7 subclasses, 24 orders, 127 families and 682 valid genera of extant sponges (with over 1600 nominal generic names and an additional 500 invalid names treated). Treatment of the fossil fauna is less comprehensive or critical, although 6 classes, 30 orders, 245 families and 998 fossil genera are mentioned. Keys to all recent and many fossil taxa are provided.




Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology


Book Description

The authors "have intended to make the forefront of sponge research easily accessible to the nonspecialist, illustrating the state of the art of the field,and presenting current controversial issues. For the specialist, we wanted this monograph to be a handy, valuable update on the most recent advances in sponge science."--p. x




Biology of Invertebrate and Lower Vertebrate Collagens


Book Description

Knowledge in the field of the biology of the extracellular matrix, and in particular of collagen, has made considerable progress over the last ten years, especially in mammals, birds and ln man with respect to very important applied medical aspects. Basic knowledge in the animal kingdom overall has increased more slowly and haphazardly. We, therefore, considered it useful to organize a meeting specifically devoted to the study of the invertebrate and lower vertebrate collagens. The NATO Scientific Division financed an Advanced Research Workshop aimed at bringing together experts qualified in collagen biology (with morphological, biochemical and genetic specialization) with researchers who are currently studying collagenous tissues of invertebrates and lower vertebrates. The Medical-Biology Committee of the CNR-Rome and the University of Milan also supplied interest and support for the organization of this Meeting. The format of the workshop consisted in: 1) main lectures on the most recent aspects of collagen biology; 2) minireviews on the current knowledge of collagenous tissues in the various invertebrate phyla and in fish; 3) contributed papers on particular aspects of research in specific fields; 4) workshops on the methodology of studying collagen. As we had intended, the Workshop gave a comprehensive overview of acquired knowledge and of the present state of research actlvlty. It permitted wide interdisciplinary discussion, enabling collabora tions to be established and new research themes to be chosen. This volume contains the text of all the contributions presented at the Meeting, including posters.




Handbook of Marine Model Organisms in Experimental Biology


Book Description

The importance of molecular approaches for comparative biology and the rapid development of new molecular tools is unprecedented. The extraordinary molecular progress belies the need for understanding the development and basic biology of whole organisms. Vigorous international efforts to train the next-generation of experimental biologists must combine both levels – next generation molecular approaches and traditional organismal biology. This book provides cutting-edge chapters regarding the growing list of marine model organisms. Access to and practical advice on these model organisms have become a conditio sine qua non for a modern education of advanced undergraduate students, graduate students and postdocs working on marine model systems. Model organisms are not only tools they are also bridges between fields – from behavior, development and physiology to functional genomics. Key Features Offers deep insights into cutting-edge model system science Provides in-depth overviews of all prominent marine model organisms Illustrates challenging experimental approaches to model system research Serves as a reference book also for next-generation functional genomics applications Fills an urgent need for students Related Titles Jarret, R. L. & K. McCluskey, eds. The Biological Resources of Model Organisms (ISBN 978-1-1382-9461-5) Kim, S.-K. Healthcare Using Marine Organisms (ISBN 978-1-1382-9538-4) Mudher, A. & T. Newman, eds. Drosophila: A Toolbox for the Study of Neurodegenerative Disease (ISBN 978-0-4154-1185-1) Green, S. L. The Laboratory Xenopus sp. (ISBN 978-1-4200-9109-0)




Animal Evolution


Book Description

Animal life, now and over the past half billion years, is incredibly diverse. Describing and understanding the evolution of this diversity of body plans - from vertebrates such as humans and fish to the numerous invertebrate groups including sponges, insects, molluscs, and the many groups of worms - is a major goal of evolutionary biology. In this book, a group of leading researchers adopt a modern, integrated approach to describe how current molecular genetic techniques and disciplines as diverse as palaeontology, embryology, and genomics have been combined, resulting in a dramatic renaissance in the study of animal evolution. The last decade has seen growing interest in evolutionary biology fuelled by a wealth of data from molecular biology. Modern phylogenies integrating evidence from molecules, embryological data, and morphology of living and fossil taxa provide a wide consensus of the major branching patterns of the tree of life; moreover, the links between phenotype and genotype are increasingly well understood. This has resulted in a reliable tree of relationships that has been widely accepted and has spawned numerous new and exciting questions that require a reassessment of the origins and radiation of animal life. The focus of this volume is at the level of major animal groups, the morphological innovations that define them, and the mechanisms of change to their embryology that have resulted in their evolution. Current research themes and future prospects are highlighted including phylogeny reconstruction, comparative developmental biology, the value of different sources of data and the importance of fossils, homology assessment, character evolution, phylogeny of major groups of animals, and genome evolution. These topics are integrated in the light of a 'new animal phylogeny', to provide fresh insights into the patterns and processes of animal evolution. Animal Evolution provides a timely and comprehensive statement of progress in the field for academic researchers requiring an authoritative, balanced and up-to-date overview of the topic. It is also intended for both upper level undergraduate and graduate students taking courses in animal evolution, molecular phylogenetics, evo-devo, comparative genomics and associated disciplines.