Neural Control of Speech


Book Description

A comprehensive and unified account of the neural computations underlying speech production, offering a theoretical framework bridging the behavioral and the neurological literatures. In this book, Frank Guenther offers a comprehensive, unified account of the neural computations underlying speech production, with an emphasis on speech motor control rather than linguistic content. Guenther focuses on the brain mechanisms responsible for commanding the musculature of the vocal tract to produce articulations that result in an acoustic signal conveying a desired string of syllables. Guenther provides neuroanatomical and neurophysiological descriptions of the primary brain structures involved in speech production, looking particularly at the cerebral cortex and its interactions with the cerebellum and basal ganglia, using basic concepts of control theory (accompanied by nontechnical explanations) to explore the computations performed by these brain regions. Guenther offers a detailed theoretical framework to account for a broad range of both behavioral and neurological data on the production of speech. He discusses such topics as the goals of the neural controller of speech; neural mechanisms involved in producing both short and long utterances; and disorders of the speech system, including apraxia of speech and stuttering. Offering a bridge between the neurological and behavioral literatures on speech production, the book will be a valuable resource for researchers in both fields.




Discovering the Brain


Book Description

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."




The Cerebellum


Book Description

Leading neuroscientist Dr. Masao Ito advances a detailed and fascinating view of what the cerebellum contributes to brain function. The cerebellum has been seen as primarily involved in coordination of body movement control, facilitating the learning of motor skills such as those involved in walking, riding a bicycle, or playing a piano. The cerebellum is now viewed as an assembly of numerous neuronal machine modules, each of which provides an implicit learning capability to various types of motor control. The cerebellum enables us to unconsciously learn motor skills through practice by forming internal models simulating control system properties of the body parts. Based on these remarkable advances in our understanding of motor control mechanisms of the cerebellum, Ito presents a still larger view of the cerebellum as serving a higher level of brain functions beyond movements, including the implicit part of the thought and cognitive processes that manipulate knowledge. Ito extends his investigation of the cerebellum to discuss neural processes that may be involved implicitly in such complex mental actions as having an intuition, imagination, hallucination, or delusion.




The Cerebellum: From Structure to Control


Book Description

Many of the cerebellar scientists of the established generation have contributed substantially to the quality of this issue. In addition, the book is marked by chapters from the coming generations of scientists who will determine the direction of cerebellar research for the next century. As in other fields of neuroscience, this research will be dominated by molecular neurobiology and new functional imaging techniques. Altogether, the book is pluriform and unique in that it is multidisciplinary, in that it promotes different views on cerebellar function, and that it is being published on the verge of different era's dominated by different generations of cerebellar scientists. The wealth of new information and ideas contained in these important papers will stimulate even more intensive research in the twenty-first century leading to a greater understanding of cerebellar function(s).




The Cerebellum and Cognition


Book Description

The Cerebellum and Cognition pulls together a preeminent group of authors. The cerebellum has been previously considered as a highly complex structure involved only with motor control. The cerebellum is essential to nonmotor functions, and recent research has revealed new medically important roles of the cerebellum and cognitive processes. - Selected for inclusion in Doody's Core Titles 2013, an essential collection development tool for health sciences libraries - Comprehensive coverage of cerebellum in motor control and cognition - New developments regarding the cerebellum and motor systems - Therapeutic implications of cerebellar contributions to cognition - Preeminent group of contributors




From Neurons to Neighborhoods


Book Description

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.




The Cerebellum as a Neuronal Machine


Book Description

This book has had a three-fold origin, corresponding to the discoveries made by the three authors and their collaborators during the last few years - mostly since 1962. A most fruitful symposium on the cerebellum was held in Tokyo at the time of the International Physiological Congress in September 1965, and there was then formulated the project of writing this book so as to organize all this new knowledge and make it readily available, and to give opportunity for the con ceptual developments that may be seen in Chapters XI, XII and XV in particular. The present account of the physiological properties of the cerebellar cortex is based to a large extent on systematic investigations that were concerned with discovering the mode of operation of the constituent neuronal elements of the cerebellar cortex. This work was carried out in the Physiology Department of the Australian National University from 1963 to 1966 in collaboration with several visiting scientists - initially Drs. ANDERSEN, OscARssaN and VooRHOEVE and later Drs. LuNAs, SAsAKI and STRATA - to all of whom grateful thanks are extended for a great many of the figures, and even more significantly for the original and critical contributions that they made to so many aspects of this exploration into the mode of operation of the neural machinery of the cerebellar cortex.




The Cerebral Circulation


Book Description

This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.