Modern Alchemy


Book Description

During his distinguished career spanning more than 50 years, Nobel laureate (Chemistry) Glenn T Seaborg published over 500 works. This volume puts together about 100 of his selected papers. The papers are divided into five categories. Category I consists of papers which detail the discovery of 10 transuranium elements and numerous heavy isotopes of special importance. Category II papers describe the discovery of a number of isotopes which became the workhorses of nuclear medicine or found other applications. Papers in Category III describe how the chemical properties of transuranium elements were originally determined, how chemistry is applied in nuclear sciences, and other chemical investigations, including early work done with the great chemist G N Lewis. Papers in Category IV cover radioactive decay chains and nuclear systematics. Lastly, papers in Category V illustrate how the powerful methods of chemistry are used to explain nuclear reactions in low, intermediate and high energy nuclear physics.




The Periodic Table I


Book Description

As 2019 has been declared the International Year of the Periodic Table, it is appropriate that Structure and Bonding marks this anniversary with two special volumes. In 1869 Dmitri Ivanovitch Mendeleev first proposed his periodic table of the elements. He is given the major credit for proposing the conceptual framework used by chemists to systematically inter-relate the chemical properties of the elements. However, the concept of periodicity evolved in distinct stages and was the culmination of work by other chemists over several decades. For example, Newland’s Law of Octaves marked an important step in the evolution of the periodic system since it represented the first clear statement that the properties of the elements repeated after intervals of 8. Mendeleev’s predictions demonstrated in an impressive manner how the periodic table could be used to predict the occurrence and properties of new elements. Not all of his many predictions proved to be valid, but the discovery of scandium, gallium and germanium represented sufficient vindication of its utility and they cemented its enduring influence. Mendeleev’s periodic table was based on the atomic weights of the elements and it was another 50 years before Moseley established that it was the atomic number of the elements, that was the fundamental parameter and this led to the prediction of further elements. Some have suggested that the periodic table is one of the most fruitful ideas in modern science and that it is comparable to Darwin’s theory of evolution by natural selection, proposed at approximately the same time. There is no doubt that the periodic table occupies a central position in chemistry. In its modern form it is reproduced in most undergraduate inorganic textbooks and is present in almost every chemistry lecture room and classroom. This first volume provides chemists with an account of the historical development of the Periodic Table and an overview of how the Periodic Table has evolved over the last 150 years. It also illustrates how it has guided the research programmes of some distinguished chemists.




Nobel Lectures in Chemistry


Book Description

Issues for 1996/2000- cataloged as a serial in LC.
















The Elements Beyond Uranium


Book Description

Written by Glenn T. Seaborg, Nobel Laureate and pre-eminent figure in the field, with the assistance of Walter D. Loveland, it covers all aspects of transuranium elements, including their discovery, chemical properties, nuclear properties, nuclear synthesis reactions, experimental techniques, natural occurrence, superheavy elements, and predictions for the future. Published on the fiftieth anniversary of the discovery of transuranium elements, it conveys the essence of the ideas and distinctive blend of theory and experiment that has marked their study.




Unravelling the Mystery of the Atomic Nucleus


Book Description

Unravelling the Mystery of the Atomic Nucleus is a history of atomic and nuclear physics. It begins in 1896 with the discovery of radioactivity, which leads to the discovery of the nucleus at the center of the atom. It follows the experimental discoveries and the theoretical developments up to the end of the Fifties. Unlike previous books regarding on history of nuclear physics, this book methodically describes how advances in technology enabled physicists to probe the physical properties of nuclei as well as how the physical laws which govern these microscopic systems were progressively discovered. The reader will gain a clear understanding of how theory is inextricably intertwined with the progress of technology. Unravelling the Mystery of the Atomic Nucleus will be of interest to physicists and to historians of physics, as well as those interested development of science.