The Chemical Transformations of C1 Compounds


Book Description

The Chemical Transformations of C1 Compounds A comprehensive exploration of one-carbon molecule transformations The chemistry of one-carbon molecules has recently gained significant prominence as the world transitions away from a petroleum-based economy to a more sustainable one. In The Chemical Transformations of C1 Compounds, an accomplished team of chemists delivers an in-depth overview of recent developments in the field of single-carbon chemistry. The three-volume book covers all major C1 sources, including carbon monoxide, carbon dioxide, methane, methanol, formic acid, formaldehyde, carbenes, C1 halides, and organometallics. The editors have included resources discussing the main reactions and transformations into feedstock chemicals of each of the major C1 compounds reviewed in dedicated chapters. Readers will discover cutting-edge material on organic transformations with MeNO2, DMF, DCM, methyl organometallic reagents, CCl4, CHCl3, and CHBr3, as well as recent achievements in cyanation reactions via cross-coupling. The book also offers: Thorough introductions to chemical transformations of CH4, methods of CH4 activation, chemical transformations of CH3OH and synthesis alkenes from CH3OH Comprehensive explorations of the carbonylation of MeOH, CH2O in organic synthesis, organic transformations of HCO2H, and hydrogen generation from HCO2H Practical discussions of the carbonylation of unsaturated bonds with heterogeneous and homogeneous catalysts, as well as the carbonylation of C(sp2)-X bonds and C(sp3)-X bonds In-depth examinations of carbonylative C-H bond activation and radical carbonylation Perfect for organic and catalytic chemists, The Chemical Transformations of C1 Compounds is also an ideal resource for industrial chemists, chemical engineers, and practitioners at energy supply companies.




Homologation Reactions


Book Description

Provides a unique summary of homologation strategies in organic synthesis Homologation Reactions presents different concepts underpinning the use of homologating reagents as well as their applications in organic synthesis. It covers in-depth discussions on the rationales governing this kind of transformations with a strong emphasis on mechanistic elements modulating critical aspects (e.g. selectivity) of the processes. In addition, this two-volume work features: Metal carbenoids, ylides, and diazo reagents Homologating agents working under nucleophilic, electrophilic, and radical regime Homologations realized on boron-containing or carbon-centered linchpins Use of highly sensitive fluorinated homologating agents Progressive homologations and the concept of assembly line synthesis Homologation processes followed by rearrangement cascades Construction of cyclic motifs and ring-expansion Homologation reactions with carbon monoxide and carbon dioxide New and/or challenging directions to expect in the future Written by an international team of leaders in the field, the book is a useful guide for designing effective transformations by using homologation reactions. It is a must-read for every synthetic chemist in academia and industry!




Introduction to Condensed Matter Chemistry


Book Description

Introduction to Condensed Matter Chemistry offers a general view of chemistry from the perspective of condensed matter chemistry, analyzing and contrasting chemical reactions in a more realistic setting than traditional thinking. Readers will also find discussions on the goals and major scientific questions in condensed matter chemistry and the molecular engineering of functional condensed matter. Processes and products of chemical reactions should not be determined solely by the structure and composition of these basic species but also by the complex and possibly multilevel structured physical and chemical environment, together referred to as their condensed state. Relevant matters in condensed state should be the main bodies of chemical reactions, which is applicable not only to solids and liquids but also to gas molecules as reactions among gas molecules can take place only in the presence of catalysts in specific condensed states or after their state transition under extreme reaction conditions. This book provides new insights on the liquid state chemistry, definitions, aspects, and interactions, summarizing fundamentals of main chemical reactions from a new perspective. - Helps to establish the new field of Condensed Matter Chemistry - Highlights the molecular engineering of functional condensed matter - Focuses on both liquid and solid state chemistry




Solar Energy Update


Book Description




Environmental Organic Chemistry


Book Description

Environmental Organic Chemistry focuses on environmental factors that govern the processes that determine the fate of organic chemicals in natural and engineered systems. The information discovered is then applied to quantitatively assessing the environmental behaviour of organic chemicals. Now in its 2nd edition this book takes a more holistic view on physical-chemical properties of organic compounds. It includes new topics that address aspects of gas/solid partitioning, bioaccumulation, and transformations in the atmosphere. Structures chapters into basic and sophisticated sections Contains illustrative examples, problems and case studies Examines the fundamental aspects of organic, physical and inorganic chemistry - applied to environmentally relevant problems Addresses problems and case studies in one volume




Organometallic Chemistry


Book Description

Organometallic chemistry is an interdisciplinary science which continues to grow at a rapid pace. Although there is continued interest in synthetic and structural studies the last decade has seen a growing interest in the potential of organometallic chemistry to provide answers to problems in catalysis synthetic organic chemistry and also in the development of new materials. This Specialist Periodical Report aims to reflect these current interests reviewing progress in theoretical organometallic chemistry, main group chemistry, the lanthanides and all aspects of transition metal chemistry. Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.




Hearings


Book Description




Advances in Microbial Physiology


Book Description

Advances in Microbial Physiology




Microbiology of Atmospheric Trace Gases


Book Description

The chapters making up this volume are based on the presentations given by their authors at the NATO Advanced Research Workshop (ARW) , also entitled "The Microbiology of Atmospheric Trace Gases: Sources, Sinks and Global Change Processes", held between 13-18 May 1995 at II Ciocco, Castelvecchio Pascoli, Tuscany, Italy. Four reports of Working Group discussions on aspects of trace gas microbiology and climate change are also included in the volume, prepared by rapporteurs designated at the ARW. All the papers here presented have been subjected to peer review by at least two referees and corrections and amendments made where necessary before their acceptance for pUblication in this volume. The ARW was set up to address a wide range of issues relating to atmospheric trace gas microbiology and the organizing group was aware of the burgeoning of studies on gas metabolism and on global effects of atmospheric trace gases over the past two decades. This research effort has led to a number of specialist and generalist meetings including the triennial series of symposia on the metabolism of one-carbon compounds, colloquia concerned with dimethyl sulfide and its precursor, DMSP, through to the Intergovernmental Panels on Climate Change, which have addressed the impact of increasing levels of atmospheric carbon dioxide, methane, nitrous oxide and chlorofluorocarbons on global climate. Over recent years methane and nitrous oxide showed rates of increase in the atmosphere of 40-48 and 3-4. 5 Tg/year, respectively.




Chemical Reaction in Condensed Phase


Book Description

Chemical Reactions in Condensed Phase - The Quantitative Level