The Chemistry of Metal Cluster Complexes


Book Description

Seven chapters summarize the current status of organometallic cluster chemistry from the viewpoints of synthesis, structure and bonding, ligand substitution reactions, ligand transformations, polyhedral rearrangement, cluster fragmentation reactions, and metal clusters as homogeneous catalysts. An eighth provides an extensive bibliography of reviews for the period from 1965 to 1988. Annotation copyrighted by Book News, Inc., Portland, OR




Physics and Chemistry of Metal Cluster Compounds


Book Description

On Friday, February 20, 1980, I had the pleasure to be present at the inaugural lecture of my colleague Jan Reedijk, who had just been named at the Chair of Inorganic Chemistry of Leiden University. According to tradition, the ceremony took place in the impressive Hall of the old University Academy Building. In the course of his lecture, Jan mentioned a number of recent developments in chemistry which had struck him as particularly important or interesting. Among those was the synthesis of large metal cluster compounds, and, to my luck, he showed a slide ofthe molecular structure of [PtI9(C)b]4-. (To my luck, since at traditional Leiden University it is quite unusual to show slides at such ceremonies.) This constituted my first acquaintance with this exciting new class of materials. I became immediately fascinated by this molecule, partly because of the esthetic beauty of its fivefold symmetry, partly because as a physicist it struck me that it could be visualized as an "embryonically small" metal particle, embedded in a shell of CO ligands.




Cluster Chemistry


Book Description

Cluster chemistry is one of the recent, exciting areas of Inorganic Chemistry. The occurence of molecular clusters, like fullerene C60, constitutes a fundamental feature midway between the chemistry of isolated chemical compounds and that of the elements. Main features of the Cluster Chemistry of both main group and transition metal elements are treated in this book. The author highlights aspects releated to the synthesis, the structure, the special bonding and the reactivity of these species. The book is written as a textbook for senior undergraduate and postgraduate students. References in tables andillustrations permit the reader to reach relevant original information. Professor Gonzalez-Moraga fills a demand for a publication appropriate for dissemination and specially for teaching this exciting subject. From the Contents: Current Concepts in Modern Chemistry - Transition Metal Cluster Chemistry - Main Group-Transition Metal Mixed Clusters - Cluster Compounds of the Main Group Elements - Synthetic Analogues of the Active Sites of Iron-Sulfur Proteins.




Transition Metal Carbonyl Cluster Chemistry


Book Description

Transition metal carbonyl clusters (TMCCs) continue to inspire great interest in chemical research, as much for their fascinating structures as for potential industrial applications conferred by their unique properties. This highly accessible book introduces the bonding, structure, spectroscopic properties, and characterization of clusters, and then explores their synthesis, reactivity, reaction mechanisms and use in organic synthesis and catalysis. Transition Metal Carbonyl Cluster Chemistry describes models and rules that correlate cluster structure with electron count, which are then applied in worked examples. Subsequent chapters explain how bonding relates to molecular structure, demonstrate the use of spectroscopic techniques such as NMR, IR and MS in cluster chemistry, and outline the factors contributing to the stability, dynamics and reactivity of clusters. The second part of this book discusses the synthesis and applications of TMCCs. It emphasizes the differences between the reactivities of clusters vs. mononuclear metal complexes, contingent to the availability of multiple-bonding sites and heterosite reactivity. The final chapters discuss reactions in which clusters act as homogeneous catalysts; including discussion on the use of solid and biphasic liquid-liquid supported clusters in heterogeneous catalysts. A useful reference for those commencing further research or post-graduate study on metal carbonyl clusters and advanced organometallic chemistry, this book is also a cornerstone addition to academic and libraries as well as private collections.







Metal Clusters in Chemistry


Book Description

Metal cluster chemistry is at the cutting edge between molecular and solid-state chemistry and has therefore had a great impact on the researchers working on organic, coordination, and solid-state chemistry, catalysis, physics, and materials science. The development of new sophisticated synthetic techniques has led to enormous progress in the synthesis of this diverse class of compounds. The number of clusters is growing rapidly, since the possible variations in the metal and ligand sphere are numerous. Modern bonding theories, such as the isolobal principle, have allowed a better understanding of the structures and properties of metal clusters, and thus paved the way for the usage of these versatile materials. Catalysis and nanomaterials are just two of the very promising application-oriented fields. Seventy six contributions, written by world experts in this research field, provide extensive coverage of different aspects of cluster chemistry, ranging from synthesis, structure determination, and dynamics to applications. Up-to-date information, including an impressive collection of structural data and illustrations, extensive coverage of the most important publications of the last decade, and many more features make this three-volume set a complete single-source guide for all researchers working in the area of cluster chemistry.




Catalysis by Di- and Polynuclear Metal Cluster Complexes


Book Description

A pioneer work on catalysis of organic chemical reactions involving multinuclear metal complexes. Catalysis by Di- and Polynuclear Metal Cluster Complexes surveys the latest developments at the frontier of this exciting field, combining theory with new and original examples of catalytic processes produced by polynuclear metal complexes. An invaluable resource for inorganic and organometallic chemists in industry and R&D, it contains chapters from world experts and scholars on: Concepts and models for characterizing homogeneous reactions catalyzed by transition metal cluster complexes Activation of ruthenium clusters for use in catalysis Catalysis by mixed metal clusters containing gold phosphine groupings Catalysis by sulfido bridged dimolybdenum complexes Dimolybdenum and ditungsten complexes Synthesis of organic compounds catalyzed by transition metal clusters Catalysis with dirhodium (II) complexes Catalytic synthesis of polythioether macrocycles Catalysis of Rh, Rh-Co, and Ir-Co multinuclear complexes and its applications to organic syntheses Bimetallic hydroformylation catalysis Catalysis by colloids Catalysis with palladium clusters Heterometallic clusters for heterogeneous catalysis Supported clusters in catalysis.




Ligated Transition Metal Clusters in Solid-state Chemistry


Book Description

This volume dedicated to the memory of Marcel Sergent who was a leader in this field for many years, addresses past achievements and recent developments in this vibrant area of research. Large classes of ligated transition metal clusters are produced either exclusively or most reliably by means of high-temperature solid-state reactions. Among them, the Chevrel-Sergent phases and related materials have generated enormous interest since their discovery in 1971. Today, these materials and their numerous derivatives still constitute a vivid area of research finding some applications not only in superconductivity, but also in catalysis, optics or thermoelectricity to mention a few.