The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide


Book Description

During the oil embargo, in the winter 1973174, parts of Western Europe present ed an almost war-like aspect on Saturdays and Sundays: no traffic on the high ways, no crowds at ski resorts and other weekend entertainment places, no gaso line at the pumps. Living and teaching then in that part of the world, and discussing the situa tion with our students, we came to the conclusion that it would be timely to col lect the fine chemistry already known at the time in the field of conversion of coal to gasoline and other chemicals, and by this way help to draw the attention to this important alternative to crude oil. The idea of this book was born. The energy shock of the early seventies has been healthy and of great conse quences in chemistry. Large amounts of research money have been put to work since, and our knowledge of the possibilities and limitations of coal-based chemistry has increased enormously. During several years it appeared inap propriate to write a monograph about a topic which was in the midst of such an impetuous development. Nevertheless, we collected, and critically selected, the upcoming work as it appeared in the literature, and also tried to provide some modest input ourselves. Now, ten years later, the situation seems to be settled to a certain degree.




CO2 Hydrogenation Catalysis


Book Description

A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.




Plasma Catalysis


Book Description

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.




Homogeneous Hydrogenation


Book Description

Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.




Catalytic Hydrogenation


Book Description

The collection of contributions in this volume presents the most up-to-date findings in catalytic hydrogenation. The individual chapters have been written by 36 top specialists each of whom has achieved a remarkable depth of coverage when dealing with his particular topic. In addition to detailed treatment of the most recent problems connected with catalytic hydrogenations, the book also contains a number of previously unpublished results obtained either by the authors themselves or within the organizations to which they are affiliated.Because of its topical and original character, the book provides a wealth of information which will be invaluable not only to researchers and technicians dealing with hydrogenation, but also to all those concerned with homogeneous and heterogeneous catalysis, organic technology, petrochemistry and chemical engineering.




The Chemistry of Catalytic Hydrocarbon Conversions


Book Description

The Chemistry of Catalytic Hydrocarbon Conversions covers the various chemical aspects of catalytic conversions of hydrocarbons. This book is composed of eight chapters that include catalytic synthesis of hydrocarbons from carbon monoxide, hydrogen, and methanol. The opening chapters examine various acid- and base-catalyzed reactions, such as isomerization, polymerization, oligomerization, alkylation, catalytic cracking, reforming, hydrocracking, and hydrogenation. The subsequent chapters are devoted to specific catalytic reactions, including heterogeneous hydrogenation, dehydrogenation, aromatization, and oxidation. Other chapters describe the homogeneous catalysis by transition metal organometallic catalysts and the metathesis of unsaturated hydrocarbons. The concluding chapter deals with the synthesis of liquid hydrocarbon fuels from carbon monoxide, hydrogen, methanol, and dimethyl ether. This book is of great benefit to petroleum chemists, engineers, and researchers.




Catalysis By Gold


Book Description

Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing gold catalysts and ways to characterise and use them effectively in reactions. The reaction mechanisms and reasons for the high activities are discussed and the applications for gold catalysis considered./a




Solid State Chemistry in Catalysis


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Beyond Oil and Gas


Book Description

The world is currently consuming about 85 million barrels of oil a day, and about two-thirds as much natural gas equivalent, both derived from non-renewable natural sources. In the foreseeable future, our energy needs will come from any available alternate source. Methanol is one such viable alternative, and also offers a convenient solution for efficient energy storage on a large scale. In this updated and enlarged edition, renowned chemists discuss in a clear and readily accessible manner the pros and cons of humankind's current main energy sources, while providing new ways to overcome obstacles. Following an introduction, the authors look at the interrelationship of fuels and energy, and at the extent of our non-renewable fossil fuels. They also discuss the hydrogen economy and its significant shortcomings. The main focus is on the conversion of CO2 from industrial as well as natural sources into liquid methanol and related DME, a diesel fuel substitute that can replace LNG and LPG. The book is rounded off with an optimistic look at future possibilities. A forward-looking and inspiring work that vividly illustrates potential solutions to our energy and environmental problems.




Carbon Dioxide Utilization for Global Sustainability


Book Description

Addressing global environmental problems, such as global warming is essential to global sustainability. Continued research leads to advancement in standard methods and produces new data. Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th ICCDU (International Conference on Carbon Dioxide Utilization) reflects the most recent research results, as well as stimulating scientific discussions with new challenges in advancing the development of carbon dioxide utilization. Drawing on a wealth of information, this well structured book will benefit students, researchers and consultants looking to catch up on current developments in environmental and chemical engineering.* Provides comprehensive data on CO2 utilisation* Contains up-to-date information, including recent research trends* Is written for students, researchers and consultants in environmental and chemical engineering