The Comparative Anatomy of Neurons: Homologous Neurons in the Medial Geniculate Body of the Opossum and the Cat


Book Description

6 Acknowledgments 87 7 References 88 Subject Index 95 VIII Abbreviations A cerebral aqueduct anterior deep dorsal nucleus, CGM AD AP anterior pretectal nucleus AR auditory radiation ASD anterior superficial dorsal nucleus, CGM BA brachium, accessory (medial) nucleus, IC BIC brachium of inferior colliculus BSC brachium of superior colliculus cerebellum CB CC caudal cortex, IC CF cuneate fasciculus CG central gray CGL lateral geniculate body medial geniculate body CGM commissure of inferior colliculus CIC CIN central intralaminar nucleus CL lateral part of commissural nucleus, IC CM central medial nucleus CN central nucleus, IC CORD spinal cord CP cerebral peduncle CSC commissure, SC CUN cuneiform area, IC D dorsal nucleus, CGM DA anterior dorsal nucleus, CGM DC dorsal cortex, IC DD deep dorsal nucleus, CGM DI dorsal intercollicular area DM dorsomedial nucleus, IC DMCP decussation of superior cerebellar peduncle DS superficial dorsal nucleus, CGM EYE enucleation FX fornix GN gracile nucleus HIT habenulo-interpeduncular tract inferior colliculus IC III oculomotor nerve IN interpeduncular nucleus L posterior limitans nucleus LC laterocaudal nucleus, IC LI lateral intercollicular area LL lateral lemniscus lateral mesencephalic nucleus LMN LN lateral nucleus, IC LP lateral posterior nucleus LPc caudal part of lateral posterior nucleus LV pars lateralis, ventral nucleus, CGM M medial division, CGM MB mammillary bodies middle cerebellar peduncle MCP MES V mesencephalic nucleus of trigeminal tract MI medial intercollicular area ML medial lemniscus MLF medial longitudinal fasciculus MT mammillothalamic tract MZ marginal zone, CGM OC oculomotor nuclei occipital cortex lesion OCC OT optic tract.




The Auditory Cortex


Book Description

There has been substantial progress in understanding the contributions of the auditory forebrain to hearing, sound localization, communication, emotive behavior, and cognition. The Auditory Cortex covers the latest knowledge about the auditory forebrain, including the auditory cortex as well as the medial geniculate body in the thalamus. This book will cover all important aspects of the auditory forebrain organization and function, integrating the auditory thalamus and cortex into a smooth, coherent whole. Volume One covers basic auditory neuroscience. It complements The Auditory Cortex, Volume 2: Integrative Neuroscience, which takes a more applied/clinical perspective.




Acoustical Signal Processing in the Central Auditory System


Book Description

The symposium on Acoustical Signal Processing in the Central Auditory System which was held in Prague on September 4--7, 1996 was the third in a series organized in Prague, after the Neuronal Mechanisms of Hearing symposium in 1980 and Auditory Pathway - Structure and Function symposium in 1987. Approximately 100 scientists regis tered for the symposium and presented 82 separate papers and posters. The present vol ume contains 53 of these contributions, mostly presented at the symposium as invited review papers. Several essential changes occurred since the previous meeting in 1987. In auditory neuroscience, recently developed methods opened new horizons in the investigation of the structure and function of the central auditory pathway. Methods like c-fos tracing tech niques and monoclonal antibodies for neurotransmitters and their receptors, like the intro duction of electrophysiological recording from brain slices have made possible new insights into the function of individual neurons and their interconnections, particularly in the cochlear nuclei and in the superior olivary complex. Integrative approaches towards understanding the central auditory function started to dominate in the field. It is not easy at the present time to differentiate between purely morphological and neurochemical ap proaches; similarly electrophysiological approaches are accompanied inevitably by behav ioral and psychophysical studies. The understanding of human brain function advanced significantly during the last several years. mainly due to the contribution of magneto encephalography. positron emission tomography and functional nuclear magnetic reso nance imaging.




The Inferior Colliculus


Book Description

Connecting the auditory brain stem to sensory, motor, and limbic systems, the inferior colliculus is a critical midbrain station for auditory processing. Winer and Schreiner's The Inferior Colliculus, a critical, comprehensive reference, presents the current knowledge of the inferior colliculus from a variety of perspectives, including anatomical, physiological, developmental, neurochemical, biophysical, neuroethological and clinical vantage points. Written by leading researchers in the field, the book is an ideal introduction to the inferior colliculus and central auditory processing for clinicians, otolaryngologists, graduate and postgraduate research workers in the auditory and other sensory-motor systems.




Hearing — the Brain and Auditory Communication in Marsupials


Book Description

This monograph evolved from years of research into the auditory pathway and hearing of many species of marsupials. Its function is to give biologists, in par ticular neurobiologists, a broad description and review of what is known of the auditory sensory capacities and processing mechanisms in this large order of mammals. My initial interest in marsupials developed from collaborative work with Dr. Richard Gates at Monash and Melbourne Universities in the 1970s and by curiosity as to whether concepts about the auditory system was stimulated stemming from experiments mainly on domestic cats could be extended to mam mals of other orders. My subsequent interest in Australian marsupials, aroused by collaboration with Dr. John Nelson at Monash University in the 1980s and 1990s, concerned their auditory systems and behavior per se and not as primitive cousins of eutherians. More recently, I have collaborated with Dr. Bruce Masterton at Florida State University in studies of New World marsupials. His sad death in 1996 has robbed neurobiologists of one of our most provocative thinkers and hypothesis testers. I would like to thank the Department of Physiology at Monash University for making many facilities available to me, the National Health and Medical Research of Australia and the Australian Research Council for providing funds for Council research, and Jill Poynton and Michelle Mulholland, who illustrated this volume.




The Mammalian Auditory Pathway: Neuroanatomy


Book Description

The Springer Handbook of Auditory Research presents a series of com prehensive and synthetic reviews of the fundamental topics in modem auditory research. It is aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes will introduce new investigators to important aspects of hearing science and will help established inves tigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely. Each volume is intended to present a particular topic comprehensively, and each chapter will serve as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peer-reviewed journals. The series focusses on topics that have developed a solid data and con ceptual foundation rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.




The Neurobiology of Australian Marsupials


Book Description

Australian marsupials represent a parallel adaptive radiation to that seen among placental mammals. This great natural experiment has produced a striking array of mammals with structural and behavioural features echoing those seen among primates, rodents, carnivores, edentates and ungulates elsewhere in the world. Many of these adaptations involve profound evolutionary changes in the nervous system, and occurred in isolation from those unfolding among placental mammals. Ashwell provides the first comprehensive review of the scientific literature on the structure and function of the nervous system of Australian marsupials. The book also includes the first comprehensive delineated atlases of brain structure in a representative diprotodont marsupial (the tammar wallaby) and a representative polyprotodont marsupial (the stripe-faced dunnart). For those interested in brain development, the book also provides the first comprehensive delineated atlas of brain development in a diprotodont marsupial (the tammar wallaby) during the critical first 4 weeks of pouch life.










Current Catalog


Book Description

First multi-year cumulation covers six years: 1965-70.