The Complete Verilog Book


Book Description

The Verilog hardware description language (HDL) provides the ability to describe digital and analog systems. This ability spans the range from descriptions that express conceptual and architectural design to detailed descriptions of implementations in gates and transistors. Verilog was developed originally at Gateway Design Automation Corporation during the mid-eighties. Tools to verify designs expressed in Verilog were implemented at the same time and marketed. Now Verilog is an open standard of IEEE with the number 1364. Verilog HDL is now used universally for digital designs in ASIC, FPGA, microprocessor, DSP and many other kinds of design-centers and is supported by most of the EDA companies. The research and education that is conducted in many universities is also using Verilog. This book introduces the Verilog hardware description language and describes it in a comprehensive manner. Verilog HDL was originally developed and specified with the intent of use with a simulator. Semantics of the language had not been fully described until now. In this book, each feature of the language is described using semantic introduction, syntax and examples. Chapter 4 leads to the full semantics of the language by providing definitions of terms, and explaining data structures and algorithms. The book is written with the approach that Verilog is not only a simulation or synthesis language, or a formal method of describing design, but a complete language addressing all of these aspects. This book covers many aspects of Verilog HDL that are essential parts of any design process.




The Complete Verilog Book


Book Description

Based on the premise that Verilog is a complete language addressing all aspects of the design process, this volume serves as a detailed professional reference on the Verilog hardware description language (HDL). It offers an introduction to the language, as well as addressing more advanced topics such as PLI, mixed signal, synthesis, timing models, system design, SDF, and semantics. Up-to-date treatment of recent developments such as Verilog-A, cycle simulation, SDF, and DCL are covered. The IEEE 1364 syntax is used. Exercises appear at the end of each chapter and abundant examples are included throughout. Annotation copyrighted by Book News, Inc., Portland, OR




The Complete Verilog Book


Book Description




Verilog HDL


Book Description

Emphasizing the detailed design of various Verilog projects, Verilog HDL: Digital Design and Modeling offers students a firm foundation on the subject matter. The textbook presents the complete Verilog language by describing different modeling constructs supported by Verilog and by providing numerous design examples and problems in each chapter. Examples include counters of different moduli, half adders, full adders, a carry lookahead adder, array multipliers, different types of Moore and Mealy machines, and much more. The text also contains information on synchronous and asynchronous sequential machines, including pulse-mode asynchronous sequential machines. In addition, it provides descriptions of the design module, the test bench module, the outputs obtained from the simulator, and the waveforms obtained from the simulator illustrating the complete functional operation of the design. Where applicable, a detailed review of the topic's theory is presented together with logic design principles, including state diagrams, Karnaugh maps, equations, and the logic diagram. Verilog HDL: Digital Design and Modeling is a comprehensive, self-contained, and inclusive textbook that carries all designs through to completion, preparing students to thoroughly understand this popular hardware description language.




Verilog HDL


Book Description

VERILOG HDL, Second Editionby Samir PalnitkarWith a Foreword by Prabhu GoelWritten forboth experienced and new users, this book gives you broad coverage of VerilogHDL. The book stresses the practical design and verification perspective ofVerilog rather than emphasizing only the language aspects. The informationpresented is fully compliant with the IEEE 1364-2001 Verilog HDL standard. Among its many features, this edition- bull; bull;Describes state-of-the-art verification methodologies bull;Provides full coverage of gate, dataflow (RTL), behavioral and switch modeling bull;Introduces you to the Programming Language Interface (PLI) bull;Describes logic synthesis methodologies bull;Explains timing and delay simulation bull;Discusses user-defined primitives bull;Offers many practical modeling tips Includes over 300 illustrations, examples, and exercises, and a Verilog resource list.Learning objectives and summaries are provided for each chapter. About the CD-ROMThe CD-ROM contains a Verilog simulator with agraphical user interface and the source code for the examples in the book. Whatpeople are saying about Verilog HDL- "Mr.Palnitkar illustrates how and why Verilog HDL is used to develop today'smost complex digital designs. This book is valuable to both the novice and theexperienced Verilog user. I highly recommend it to anyone exploring Verilogbased design." -RajeevMadhavan, Chairman and CEO, Magma Design Automation "Thisbook is unique in its breadth of information on Verilog and Verilog-relatedtopics. It is fully compliant with the IEEE 1364-2001 standard, contains allthe information that you need on the basics, and devotes several chapters toadvanced topics such as verification, PLI, synthesis and modelingtechniques." -MichaelMcNamara, Chair, IEEE 1364-2001 Verilog Standards Organization Thishas been my favorite Verilog book since I picked it up in college. It is theonly book that covers practical Verilog. A must have for beginners andexperts." -BerendOzceri, Design Engineer, Cisco Systems, Inc. "Simple,logical and well-organized material with plenty of illustrations, makes this anideal textbook." -Arun K. Somani, Jerry R. Junkins Chair Professor,Department of Electrical and Computer Engineering, Iowa State University, Ames PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com ISBN: 0-13-044911-3




Design Through Verilog HDL


Book Description

A comprehensive resource on Verilog HDL for beginners and experts Large and complicated digital circuits can be incorporated into hardware by using Verilog, a hardware description language (HDL). A designer aspiring to master this versatile language must first become familiar with its constructs, practice their use in real applications, and apply them in combinations in order to be successful. Design Through Verilog HDL affords novices the opportunity to perform all of these tasks, while also offering seasoned professionals a comprehensive resource on this dynamic tool. Describing a design using Verilog is only half the story: writing test-benches, testing a design for all its desired functions, and how identifying and removing the faults remain significant challenges. Design Through Verilog HDL addresses each of these issues concisely and effectively. The authors discuss constructs through illustrative examples that are tested with popular simulation packages, ensuring the subject matter remains practically relevant. Other important topics covered include: Primitives Gate and Net delays Buffers CMOS switches State machine design Further, the authors focus on illuminating the differences between gate level, data flow, and behavioral styles of Verilog, a critical distinction for designers. The book's final chapters deal with advanced topics such as timescales, parameters and related constructs, queues, and switch level design. Each chapter concludes with exercises that both ensure readers have mastered the present material and stimulate readers to explore avenues of their own choosing. Written and assembled in a paced, logical manner, Design Through Verilog HDL provides professionals, graduate students, and advanced undergraduates with a one-of-a-kind resource.




The Designer’s Guide to Verilog-AMS


Book Description

The Verilog Hardware Description Language (Verilog-HDL) has long been the most popular language for describing complex digital hardware. It started life as a prop- etary language but was donated by Cadence Design Systems to the design community to serve as the basis of an open standard. That standard was formalized in 1995 by the IEEE in standard 1364-1995. About that same time a group named Analog Verilog International formed with the intent of proposing extensions to Verilog to support analog and mixed-signal simulation. The first fruits of the labor of that group became available in 1996 when the language definition of Verilog-A was released. Verilog-A was not intended to work directly with Verilog-HDL. Rather it was a language with Similar syntax and related semantics that was intended to model analog systems and be compatible with SPICE-class circuit simulation engines. The first implementation of Verilog-A soon followed: a version from Cadence that ran on their Spectre circuit simulator. As more implementations of Verilog-A became available, the group defining the a- log and mixed-signal extensions to Verilog continued their work, releasing the defi- tion of Verilog-AMS in 2000. Verilog-AMS combines both Verilog-HDL and Verilog-A, and adds additional mixed-signal constructs, providing a hardware description language suitable for analog, digital, and mixed-signal systems. Again, Cadence was first to release an implementation of this new language, in a product named AMS Designer that combines their Verilog and Spectre simulation engines.




Verilog Designer's Library


Book Description

Ready-to-use building blocks for integrated circuit design. Why start coding from scratch when you can work from this library of pre-tested routines, created by an HDL expert? There are plenty of introductory texts to describe the basics of Verilog, but Verilog Designer's Library is the only book that offers real, reusable routines that you can put to work right away. Verilog Designer's Library organizes Verilog routines according to functionality, making it easy to locate the material you need. Each function is described by a behavioral model to use for simulation, followed by the RTL code you'll use to synthesize the gate-level implementation. Extensive test code is included for each function, to assist you with your own verification efforts. Coverage includes: Essential Verilog coding techniques Basic building blocks of successful routines State machines and memories Practical debugging guidelines Although Verilog Designer's Library assumes a basic familiarity with Verilog structure and syntax, it does not require a background in programming. Beginners can work through the book in sequence to develop their skills, while experienced Verilog users can go directly to the routines they need. Hardware designers, systems analysts, VARs, OEMs, software developers, and system integrators will find it an ideal sourcebook on all aspects of Verilog development.




Verilog by Example


Book Description

A practical primer for the student and practicing engineer already familiar with the basics of digital design, the reference develops a working grasp of the verilog hardware description language step-by-step using easy-to-understand examples. Starting with a simple but workable design sample, increasingly more complex fundamentals of the language are introduced until all major features of verilog are brought to light. Included in the coverage are state machines, modular design, FPGA-based memories, clock management, specialized I/O, and an introduction to techniques of simulation. The goal is to prepare the reader to design real-world FPGA solutions. All the sample code used in the book is available online. What Strunk and White did for the English language with "The Elements of Style," VERILOG BY EXAMPLE does for FPGA design.




The Verilog® Hardware Description Language


Book Description

XV From the Old to the New xvii Acknowledgments xx| Verilog A Tutorial Introduction Getting Started 2 A Structural Description 2 Simulating the binaryToESeg Driver 4 Creating Ports For the Module 7 Creating a Testbench For a Module 8 Behavioral Modeling of Combinational Circuits 11 Procedural Models 12 Rules for Synthesizing Combinational Circuits 13 Procedural Modeling of Clocked Sequential Circuits 14 Modeling Finite State Machines 15 Rules for Synthesizing Sequential Systems 18 Non-Blocking Assignment ("